

IMPORTANT INSTRUCTIONS

- The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/black ball point pen only.
- The test is of **3 hours** duration and this Test Booklet contains 180 questions. Each question carries **4** marks. For each correct response, the candidate will get **4** marks. For ewach incorrect response, **one mark** will be deducted from the total scores. The maximum marks are 720.
- 3. Use **Blue/Black Ball Point Pen only** for writing particulars on this page/marking response
- Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is WW. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll. No. anywhere else except in the specified space in the Test Booklet / Answer sheet.
- 8. Use of white fluid for correction is *not* permissible on the Answer Sheet.

PHYSICS

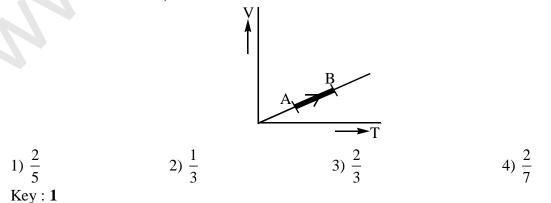
1. The efficiency of an ideal heat engine working between the freezing point and boiling point of water is

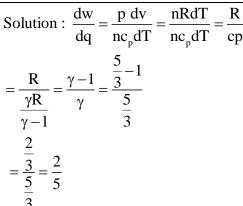
1) 26.8% 2) 6.25% 3) 20% 4) 12.5% Key : 1 Solution : $\eta = 1 - \frac{T_2}{T_1}$ $= 1 - \frac{273}{373}$ = 1 - 0.7319 $= 0.268 \times 100$ = 26.8%

2. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere?

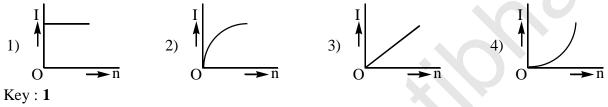
(Given : Mass of oxygen molecule $(m) = 2.76 \times 10^{-26} \text{kg}$

Boltzmann's constant $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$)


1)
$$2.508 \times 10^{4}$$
 K 2) 5.016×10^{4} K 3) 8.360×10^{4} K 4) 1.254×10^{4} K Key : **3**
Solution : $V_{e} = \sqrt{\frac{3K_{B}T}{m}}$
 $(11.2 \times 10^{3})^{2} = \frac{3 \times 1.38 \times 10^{-23} \times T}{2.76 \times 10^{-26}}$
 $T = \frac{112 \times 112 \times 10^{-2} \times 10^{6} \times 2 \times 10^{-3}}{3}$
= 8.360×10^{4} K


3. The fundamental frequency in an open organ pipe is equal to the third harmonie of a closed organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is 1) 13.2 cm
2) 12.5 cm
3) 8 cm
4) 16 cm
Key : 1

Solution : $n_0 = 3n_c$


$$\frac{V}{2\ell_0} = \frac{3V}{4\ell_c}$$

$$\ell_0 = \frac{2\ell_c}{3} = \frac{2 \times 20}{3} = \frac{40}{3} = 13.2 \text{ cm}$$

4. The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

5. A battery consists of a variable number 'n' of identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?

Solution : $I = \frac{nE}{nr} = \frac{E}{r}$ (n is Independent of current)

- 6. A carbon resistor of (47 ± 4.7) k Ω is to be marked with rings of different colours for its identification. The colour code sequence will be
 - 1) Violet Yellow Orange Silver 2) Yellow – Green – Violet – Gold
 - 3) Yellow Green Orange Silver
- 4) Green Orange Violet Gold

Key : **3**

Solution : Use colour code of resistance

A set of 'n' equal resistors, of value 'R' each, are connected in series to a battery of emf 'E' 7. and internal resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I. The value of 'n' is

1) 10
1) 10
Key : 1
Solution :
$$I = \frac{E}{nR+R} = \frac{E}{(n+1)R}$$

 $10I = \frac{E}{\frac{R}{n}+R} = \frac{E}{(\frac{1+n}{n})R}$
 $10\frac{E}{(n+1)R} = \frac{ne}{(1+n)R}$
 $n = 10$
Current sensitivity of a moving coil galvanometer 5 div/mA and its voltage
(angular deflection per unit voltage applied) is 20 div/V. The resistance of

e sensitivity the galvanometer is

1) 40Ω 2) 250Ω 3) 25Ω 4) 500Ω Key : 2 Solution : $\frac{\theta}{V} = \frac{\theta}{IG}$

$$G = \frac{5 \times 10^3}{20}$$
$$G = \frac{1000}{4} = 250\Omega$$

9. A metallic rod of mass per unit length 0.5 kg m⁻¹ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is

1) 7.14 A 1) 7.14 A Key : 4 Solution : $F_g = F_B$ mg sin $\theta = i\ell B \cos \theta$ $\frac{m}{\ell} \frac{g}{B} \frac{\sin \theta}{\cos \theta} = i$ $\frac{0.5 \times 9.8}{1.732} \times \frac{1}{\sqrt{3}} = i$ $\frac{50}{25} \times \frac{9.8}{1.732} = i$

- 10. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
 - 1) The current source
 - 2) The lattice structure of the material of the rod
 - 3) The magnetic field
 - 4) The induced electric field due to the changing magnetic field

Key : **1**

Solution : Conceptual

11. An inductor 20 mH, a capacitor 100μ F and a resistor 50Ω are connected in series across a source of emf, V = 10 sin 314 t. The power loss in the circuit is

1) 0.79 W
Key : 1
Solution :
$$I_0 = \frac{E_0}{\sqrt{R^2 + (X_L - X_C)^2}} (: R = 50\Omega X_L = 6.28\Omega, X_C = 31.84\Omega)$$

 $= \frac{10}{\sqrt{2500 + (6.28 - 31.84)^2}}$
 $= \frac{10}{56.2}$
 $P = I_{rms}V_{rms}Cos\phi$ (:: $\phi = 0$)
 $= \frac{I_0}{\sqrt{2}} \cdot \frac{E_0}{\sqrt{2}}$
 $= 0.79$ watt

12.	v i	40 cm from a concave mirror of focal length 15 cm. If the ice of 20 cm towards the mirror, the displacement of the
	image will be	_
	1) 30 cm away from the mirror	2) 30 cm towards the mirror
	3) 36 cm away from the mirror	4) 36 cm towards the mirror

Key : 3
Solution : $\frac{1}{f} = \frac{1}{v} + \frac{1}{4}$
$\frac{1}{v_1} = -\frac{1}{7} + \frac{1}{4}$
$v_1 7 4$
$\frac{1}{v_1} = \frac{1}{4} - \frac{1}{7}$
v ₁ 4 7
$\frac{1}{v_1} = \frac{1}{40} - \frac{1}{15}$
v ₁ 40 15
$\frac{1}{v_1} = \frac{15 - 40}{40 \times 15}$
$v_1 = \frac{-40 \times 15}{25}$
$v_1 = -24$
$\frac{1}{v_2} = \frac{1}{4} - \frac{1}{f}$
$\frac{1}{v_2} = \frac{1}{20} - \frac{1}{15}$
$=\frac{15-20}{20\times 15}$
5
$=\frac{5}{20\times 15}$
$v_2 = -60 \text{ cm}$
Displaced =60-24

= 36 cm a way the mirror

13. An em wave is propagating in a medium with a velocity $\vec{V} = V\hat{i}$. The instantaneous oscillationg electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along

1) -z direction2) -y direction3) +z direction4) -x directionKey : 3

Solution : $\hat{j} \times \hat{k} = \hat{i}$

14. The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance

1) 0.138 H 2) 1.389 H 3) 138.88 H 4) 13.89 H
Key : 4
Solution :
$$U = \frac{1}{2}LI^2$$

 $25 \times 10^{-3} = \frac{1}{2} \times (60 \times 10^{-3})^2$
 $\frac{50 \times 10^{-3}}{3600 \times 10^{-6}} = L$
 $\frac{5}{36} \times 10^2 = L$


 $L = \frac{500}{36} = 13.89 \text{ H}$

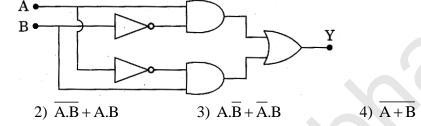
 $i = 45^{\circ}$

15. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30° . One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is

1) 60° 2) 30° 3) 45° 4) Zero Key : **3** Solution : $\mu_1 \sin i = \mu_2 \sin r$ $r_1 + r_2 = A$ $r_1 = 30$ $i = \sqrt{2} \frac{1}{2}$ $i = \frac{1}{\sqrt{2}}$

16. In the circuit shown in the figure, the input voltage V_i is 20 V, $V_{BE} = 0$ and $V_{CE} = 0$. The values of I_B, I_C and β are given by

17. In a p-n junction diode, change in temperature due to heating


- 1) Affects only reverse resistance
- 2) Does not affect resistance of p-n junction
- 3) Affects only forward resistance
- 4) Affects the overall V I characteristics of p-n junction

Key : 4

Solution : As temperature \uparrow

Resistance \downarrow

18. In the combination of the following gates the output Y can be written in terms of inputs A and **B** as

1) A.B Key : 3

Solution : Conceptual

19. Unpolarised light is incident from air on a plane surface of a material of refractive index ' μ '. At a particular angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation? 1) Reflected light is polarized with its electric vector parallel to the plane of incidence

$$2) i = \sin^{-1}\left(\frac{1}{\mu}\right)$$

3) Reflected light is polarized with its electric vector perpendicular to the plane of incidence

4)
$$i = \tan^{-1}\left(\frac{1}{\mu}\right)$$

Key : **3**

Solution : Conceptual

In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength 20.

 λ of the light used is 5896 A and distance D between the screen and slits is 100 cm. It is

found that the angular width of fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to

1) 1.8 mm	2) 2.1 mm	3) 1.9 mm	4) 1.7 mm
Key : 3			
Solution : $\theta = \frac{\lambda}{d}$			
$\theta \propto \frac{1}{d}$			
$\theta_1 - d_2$			
$\theta_2 = \frac{1}{d_1}$			
$\frac{0.20}{0.20} = \frac{d_2}{0.20}$			
0.21 2			
$d_2 = 1.9 \mathrm{mm}$			
An astronomical refr	acting telescope will hav	e large angular magnif	ication and high angular

- resolution, when it has an objective lens of
- 1) Small focal length and large diameter
 - 3) Large focal length and small diameter
- 2) Large focal length and large diameter 4) Small focal length and small diameter
- Key : 2

21.

Solution : Angular resolution = $\frac{1.22\lambda}{d}$

As d is less, angular resolution is high

22. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of 27° C two successive resonances are produced of 27° C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27° C is

3) 339 m/s

4) 300 m/s

1) 330 m/s 2) 350 m/s Key : **3** Solution : $v = 2n(\ell_3 - \ell_1)$ $v = 2 \times 320 \times (73 - 20) \times 10^{-2}$

 $v = 640 \times 53 \times 10^{-2}$ v = 339 m/s

23. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 ms⁻² at a distance of 5m from the mean position. The time period of oscillation is

1)
$$2\pi s$$
 2) $2 s$ 3) πs 4) $1 s$
Key: **3**
Solution: $a = w^2 x$
 $20 = w^2 \times 5$
 $4 = w^2$
 $w = 2$
 $\frac{2\pi}{T} = 2$
 $T = \pi$

- 24. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is
 - 1) Independent of the distance between the plates
 - 2) Proportional to the square root of the distance between the plates
 - 3) Linearly proportional to the distance between the plates.
 - 4) Inversely proportional to the distance between the plates.

 $Key: \mathbf{1}$

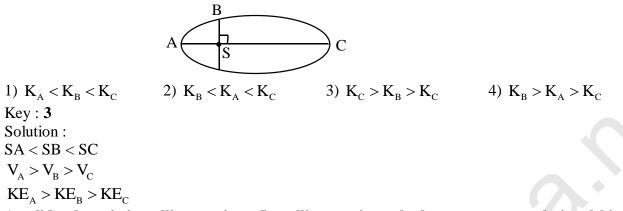
Solution : $F = \frac{Q^2}{2 \epsilon_0 A}$ When Q, A are constant

F is independent of distance between the plates

25. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall the proton is

```
1) smaller

Key : 1


Solution : t_e = \sqrt{\frac{2hm_e}{Eq}}

t_p = \sqrt{\frac{2hm_p}{Eq}}

As m_p > m_e

t_p > t_e \qquad \therefore t_e < t_p
```

26. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A,B and C are K_A, K_B and K_C, respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure Then.

A solid sphere is in rolling motion . In rolling motion a body possesses translational kinetic 27. energy (K_t) as well as rotational kinetic energy (K_t) simultaneously. The ratio $K_t : (K_t + K_r)$ for the snhere is

the sphere is			
1) 7:10	2) 10 : 7	3) 5 : 7	4) 2 :5
Key : 3			
Solution : $\frac{k_{tra}}{k_{Tot}} = \frac{1}{2} mv^2$			
$\frac{k_{tra}}{k_{Tot}} = \frac{1}{2} m v^2 \left[1 + \beta \right]$			
k_{tra} _ 1 _ 1			
$\frac{1}{k_{Tot}} - \frac{1}{1+\beta} - \frac{1}{1+\frac{2}{5}}$			
$\frac{k_{tra}}{2} = \frac{5}{2}$			
$\frac{1}{k_{Tot}} = \frac{1}{7}$			

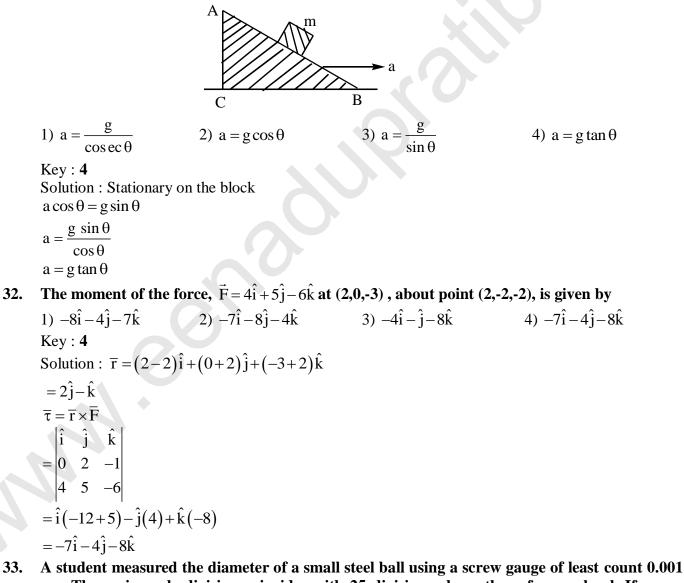
- 28. A solid sphere is rotating freely about its symmetry axis is free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
 - 1) Angular velocity 3) Moment of inertia Key : 4

- 2) Rotational kinetic energy
- 4) Angular momentum

- Solution : L = Constant
- 29. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct?
 - 1) Raindrops will fall faster
 - 2) Time period of simple pendulum on the Earth would decrease.
 - 3) Walking on the ground would become more difficult
 - 4) 'g' on the Earth will not change.

Key : 4

Solution : Conceptual


A toy car with charge q moves on a frictionless horizontal plane surface under the influence of 30. a uniform electric field \vec{E} . Due to the force $q\vec{E}$, its velocity increases from 0 to 6 m/s in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively

```
1) 2 m/s, 4 m/s
                         2) 1 m/s, 3.5 m/s
                                                   3) 1 m/s, 3 m/s
                                                                             4) 1.5 m/s, 3 m/s
Key : 3
```

Solution : Eq = ma $a = \frac{Eq}{m}$ = 6 u = 6 v = u + at 0 = 6 - 6t 6t = 6 t = 1Average velocity $\frac{s}{t} = 1m/s$ Distance = 15 m

Average speed = 15/5 = 3 m/s

31. A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is

33. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is

0.521 cm
0.053 cm
0.525 cm

4) 0.529 cm
Key : 4

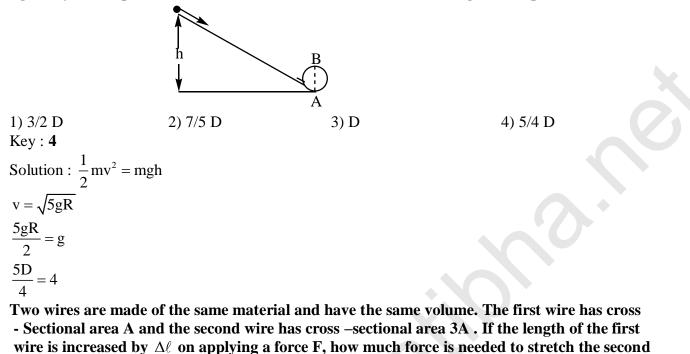
Solution : $d = a + L.c \times no$ of divisions $d = 5 \times 10^{-3} + 0.001 \times 25 + 0.004$ d = 0.5 + 0.025 + 0.004d = 0.529 cm

34. Which one of the following statement is *incorrect* ?

1) Rolling friction is smaller than sliding friction

- 2) Frictional force opposes the relative motion.
- 3) Limiting value to normal reaction
- 4) Coefficient of sliding friction has dimensions of length.

Key : **4**


Solution : Conceptual

35. Three objects, A : (a solid sphere), B: (a thin circular disk) and C: (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axis. The amounts of work (W) required to bring them to rest, would satisfy the relation

1)
$$W_C > W_B > W_A$$
 2) $W_B > W_C$ 3) $W_A > W_B > W_C$ 4) $W_A > W_C > W_B$
Key : 1
Solution : $W = \frac{1}{2}I\omega^2$
 $W\alpha I$
 $I_{solid} < I_{disc} < I_{riy}$
 $\frac{2}{5}MR^2 < \frac{MR^2}{2} < MR^2$
 $W_A < W_B < W_C$
 $W_C > W_B > W_A$

36. A moving block having mass m, collides with another stationary block having mass 4m .The lighter block comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be

1) 0.5 2) 0.8 3) 0.25 4) 0.4 Key : **3** Solution : $V_2 = \frac{(1+e)m_1}{m_1 + m_2}U_1$ $V_2 = \frac{(1+e)m}{5m}v$ $v_2 = \frac{1+e}{5}v$ $e = \frac{v_2}{u_1}$ $v_2 = ev$ $ev = \left(\frac{1+e}{5}\right)v$ 5e = 1+e 4e = 1 $e = \frac{1}{4} = 0.25$ **37.** A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to

4) F

wire by the same amount? 1) 9 F 2) 4 F 3) 6 F Key : 1 Solution : $Y = \frac{F\ell}{Ae}$ $F = \frac{YAeA}{\ell A} = \frac{YA^2e^2}{V}$ $\frac{F_1}{F_2} = \left(\frac{A_1}{A_2}\right)\frac{e_1}{e_2} \implies \frac{F_1}{F_2} = \left(\frac{A}{3A}\right)^2 = \frac{1}{9}$ $F_2 = 9F_1$

39. A sample of 0.1 g of water at 100[°]C and normal pressure $(1.013 \times 10^5 \text{ Nm}^{-2})$ requires 54 cal of heat energy to convert to steam at 100[°]C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is

1) 104.3 J Key : **3** Solution : $\Delta U = \Delta Q - p dv$ = mL - P dv $= (10^{-4})540 \times 4200 - 11.013 \times 10^{5} (167) \times 10^{-6}$ = 208.7 J

40. The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_0 . If the temperature of the black body is now changed so that it radiates maximum energy at

wavelength $\frac{3}{4}\lambda_0$, The power radiated by it becomes nP. The value of n is1)3/42)256/813)4/34)81/256Key : 2Solution : $P\alpha \frac{1}{\lambda^4}$

38.

$$\frac{P_1}{P_2} = \left(\frac{\lambda_2}{\lambda_1}\right)^4$$
$$\frac{p}{np} = \left(\frac{3}{4} \times \frac{\lambda_0}{\lambda_0}\right)^4$$
$$\frac{1}{n} = \frac{81}{256}$$
$$n = \frac{256}{81}$$

41. A small sphere of radius 'r' falls from rest in a viscous liquid . As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to

1) r^{3} 2) r^{5} 3) r^{2} 4) r^{6} Key: 2 Solution: W = Fs $= (6\pi nrv)vt$ $w\alpha (r^{2})^{2}r$ $W\alpha r^{5}$

42. An electron of mass m with an initial velocity $\vec{V} = V_0 \hat{i} (V_0 - 0)$ enters an electric field $\vec{E} = -E_0 \hat{i} (E_0 = \text{constant} > 0)$ at t=0. If λ_0 is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is

1)
$$\frac{\lambda_0}{\left(1+\frac{eE_0}{mV_0}t\right)}$$

2) $\lambda_0 t$
3) $\lambda_0 \left(1+\frac{eE_0}{mV_0}t\right)$
4) λ_0
Key : 1
Solution : $\lambda = \frac{h}{mv}$
 $V = V_0 \uparrow$
 $V = V_0 + \frac{Ee}{m}t$
 $\lambda_0 = \frac{h}{mv_0}$
 $\lambda^1 = \frac{h}{m\left(v_0 + \frac{Ee}{m}t\right)}$
 $= \frac{h}{mv_0\left[1+\frac{Ee}{mv_0}t\right]}$
 $\lambda^1 = \frac{\lambda_0}{\left[1+\frac{eE_0}{mv_0}t\right]}$
For a radioactive material, half-life is 10 minutes. If initially there are 600 m

43. For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is
1) 20
2) 30
3) 10
4) 15

t = nT

Key : 1
Solution : $T = 10 \min$
t
$\mathbf{N} = \mathbf{N}_{\mathrm{O}} \left(\frac{1}{2}\right)^{\frac{1}{\mathrm{T}}}$
$150 = 600 \left(\frac{1}{2}\right)^{\frac{t}{10}}$
$\frac{150}{600} = \left(\frac{1}{2}\right)^{\frac{t}{10}}$
$\left(\frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^{\frac{t}{10}}$
$2 = \frac{t}{10}$
t = 20 sec

- 44. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
 - 1) 1:1 Key : **3** Solution : $\frac{\text{KE}}{\text{TE}} = \frac{+13.6\frac{Z^2}{n^2}}{-13.6\frac{Z^2}{n^2}} = 1:-1$
- 45. When the light of frequency $2v_0$, (where v_0 is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted from the same plate is v_1 . When the frequency of the incident radiation is increased to $5v_0$, the maximum electrons emitted from the same plate is v_2 . The ratio of v, to v_2 is

CHEMISTRY

46. Which of the following oxide is most acidic in nature?

1) MgO	2) BaO	3) BeO	4) CaO
Key : 3			
Solution : BeO			

47. The difference between amylose and amylopectin is

1) Amylopectin have $1 \rightarrow 4 \quad \alpha$ -linkage and $1 \rightarrow 6 \quad \alpha$ -linkage

2) Amylopectin have $1 \rightarrow 4 \alpha$ – linkage and $1 \rightarrow 6 \beta$ – linkage

3) Amylose have $1 \rightarrow 4 \alpha$ – linkage and $1 \rightarrow 6 \beta$ – linkage

4) Amylose is made up of glucose and galactose

2) 2.8

Key : 1

Solution : Conceptual

48. A mixture of 2:3 g formic acid and 4.5 g oxalic acid is treated with conc. H_2SO_4 The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be

3) 3.0

4)4.4

1) 1.4 Key : 2

Solution :

 H_2SO_4

HCOOH
$$\longrightarrow$$
 CO_(g) + H₂O_(l)

$$H_2C_2O_4 \xrightarrow{H_2SO_4} CO_{(g)} + CO_{2(g)} + H_2O_{(l)}$$

1.4+1.4=2.8g of CO

49. Regarding cross-linked or network polymers, which of the following statements is incorrect?

- 1) They contain covalent bonds between various linear polymer chains.
 - 2) Examples are Bakelite and melamine
 - 3) They are formed from bi-and tri-functional monomers.
 - 4) They contain strong covalent bonds in their polymer chains.

Key:4

Solution : Conceptual

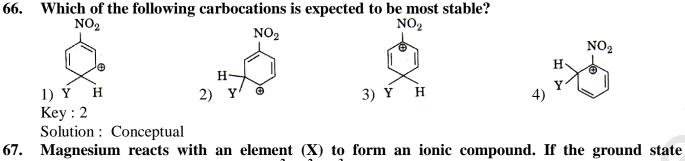
50. Nitration of aniline in strong acidic medium also gives m-nitroaniline because

- 1) In spite of substituents nitro group always goes to only m-position.
- 2) In absence of substituents nitro group always goes to m-position.
- 3) In electrophilic substitution reactions amino group is meta directive.
- 4) In acidic (strong) medium aniline is present as anilinium ion.

Key : 4

Solution : Conceptual

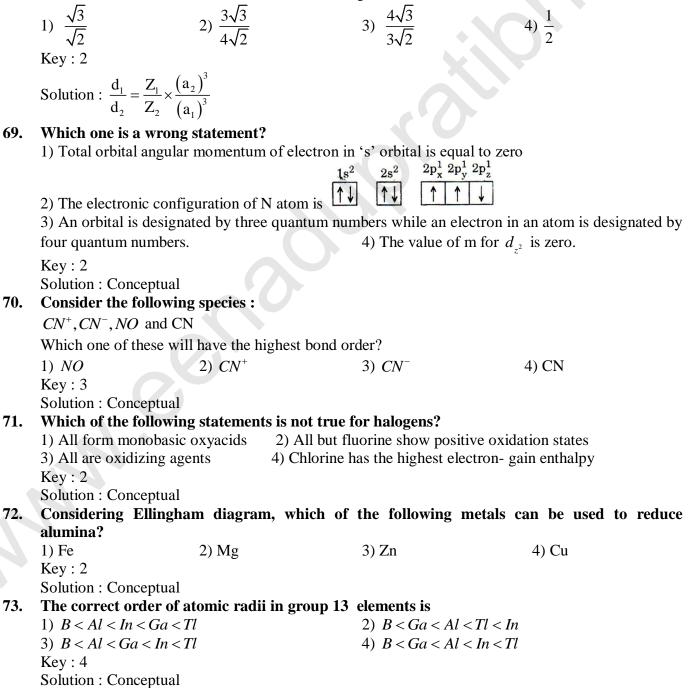
51. The compound A on treatment with Na gives B, and with PCl₅ gives C.B and C react to gether to give diethyl ether. A,B and C are in the order


1) $C_2H_5OH, C_2H_6, C_2H_5Cl$ 3) $C_2H_5OH, C_2H_6Cl, C_2H_5ONa$ Key : 4 Solution : $C_2H_5OH + Na \rightarrow C_2H_5ONa$ PCl_5 C_2H_5Cl

Hydrocarbon (A) reacts with bromine by substitution to torm an alkyl bromide which by 52. Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms.(A) is 1) $CH \equiv CH$ 2) CH₃-CH₃ 3) $CH_2=CH_2$ 4) CH₄ Key: 4Solution : Conceptual 53. The compound C₇H₈ undergoes the following reactions: $C_7H_8 \xrightarrow{3Cl_2/\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCl} C$ The product 'C' is 2) 3-bromo- 2,4,6- trichlorotoluene 1) m - bromotoluene 3) o-bromotoluene 4) p-bromotoluene Key: 1Solution : CCl₂ CCL CH₂ Br_2/Fe Br Zn/HCl CH₂ Br 54. Which oxide of mitrogen is not a common pollutant introduced inte the atmosphere both due to natural and human activity? 3) NO₂ 1) N_2O_5 2) N_2O 4) NO Key : 1 Solution : Conceptual The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1: 0.5:1 ΔH for the 55. formation of XY is 200kJ mol⁻¹. The bond dissociation energy of X₂ will be 1) 200 kJ mol⁻¹ 2) 800 kJ mole⁻¹ $3)100 \text{ kJ mole}^{-1}$ 4) 400kJ mole⁻¹ Key: 2Solution : $\Delta H = B.E_{R} - B.E_{P}$ When initial concentration of the reactant is doubled, the half-life period of a zero order 56. reaction 1) is halved 2) is tripled 3) is doubled 4) remains unchanged Key : 3 Solution : $t_{1/2} = \frac{a}{2t}$ The correction factor 'a' to the ideal gas equation corresponds to 57. 2)electric field present between the gas molecules 1) density of the gas molecules 3) volume of the gas molecules 4) forces of attraction between the gas molecules Key:4Solution : Conceptual For the redox reaction $MnO_4^- + C_2O_4^{2-} + H^+ \rightarrow Mn^{2+} + CO_2 + H_2O$ the correct coefficients of the **58**. reactants for the balanced equation are H^+ $C_2 O_4^{2-}$ MnO_{A}^{-} 1) 16 2 5 5 2) 2 16 3) 2 5 16 4) 5 16 2 Key: 3

Solution : Conceptual

59. Which one of the following conditions will favour maximum formation of the product in the reaction $A_2(g) + B_2(g) \square \square X_2(g) \Delta_r H = -X kJ$? 1) Low temperature and high pressure 2) High temperature and high pressure 3) Low temperature and low pressure 4) High temperature and low pressure Key: 1Solution : Conceptual **60.** Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below: $BrO_{4}^{-} \xrightarrow{1.82V} BrO_{3}^{-} \xrightarrow{1.5V} HBrO$ $Br \leftarrow Br_2 \leftarrow Br_2 \leftarrow Br_2$ Then the species undergoing disproportionation is 1) BrO_{3}^{-} 2) BrO₂ 3) BrO_{4}^{-} 4) HBrO Key:4 Solution : $(\Delta G^0 = -nFE^0_{cell})$ more E^0_{cell} , more favourable conditions for the reactions Among CaH_2 , BeH_2 , BaH_2 , the order of ionic character is 61. 2) $BeH_2 < BaH_2 < CaH_2$ 1) $BeH_2 < CaH_2 < BaH_2$ 4) $BaH_{2} < BeH_{2} < CaH_{2}$ 3) $CaH_2 < BeH_2 < BaH_2$ Key: 1Solution : Conceptual In which case in the number of molecules of water maximum? **62.** 2) 0.00224 L of water vapours at 1 atm and 273 k 1) 18 mL of water 4) 10^{-3} mo of water 3) 0.18 g of water Key : 1 Solution : Conceptual The correct difference between first and second- order reactions is that **63**. 1) The rate of a first- order reaction does not depend on reactant concentrations; the rate of a second- order reaction does depend on reactant concentrations 2) A first- order reaction can be catalyzed; a second- order reaction cannot be catalyzed 3) The half-life of a first-order reaction does not depend on $[A]_0$; the half-life of a second-order reaction does depend on $[A]_{0}$ 4) The rate of a first-order reaction does depend on reactant concentrations; the rate of a secondorder reaction does not depend on reactant concentrations. Key : 3 Solution : $t_{1/2} \alpha \frac{1}{2^{n-1}}$ Which of the following is correct with respect to –I effect of the substituents? (R= alkyl) **64**. 2) $-NH_2 > -OR > -F$ 1) $-NH_{2} < -OR < -F$ 3) $-NR_2 < -OR < -F$ 4) $-NR_{2} > -OR > -F$ Key : 1 Solution : Conceptual Which of the following molecules represents the order of hybridization sp^2 , sp^2 , sp, sp from 65. left to right atoms? 1) $HC \equiv C - C \equiv CH$ 2) $CH_2 = CH - CH = CH_2$ 4) $CH_3 - CH = CH - CH$ 3) $CH_2 = CH - C \equiv CH$ Kev:3Solution : Conceptual



electronic configuration of (X) is $1s^2$, $2s^2$, $2p^3$, the simplest formula for this compound is 1) Mg_2X_3 2) Mg_2X 3) MgX_2 4) Mg_3X_2 Key : 4

Solution : Conceptual

68. Iron exhibits bcc structure at room temperature. Above 900[°]C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900[°]C (assuming molar mass and atomic radii of iron remains constant with temperature) is

			ATTOMAL INSTIT	
74.	In the structure o	f ClF_3 , the number of lo	one pairs of electrons of	n central atom 'Cl' is
	1) One	2) Four	3) Two	4) Three
	Key : 3	, ,	,	
	Solution : Concept	ual		
75.	The correct order	of N-compounds in its	decreasing order of o	xidation states is
	1) $HNO_3, NO, N_2,$	NH_4Cl	2) NHO_3, NH_4C	Cl, NO, N_2
	3) HNO_3, NO, NH	$_4Cl, N_2$	4) NH_4Cl, N_2, N_3	NO, HNO_3
	Key:1			
	Solution : Concept	ual		
76.	Which one of the	following elements is u	nable to from MF_6^{3-} ic	on?
	1) Ga	2) B	3) Al	4) In
	Key : 2			
	Solution : Concept	ual		
		OH	O ⁻ Na ⁺	
	ſ	\bigcirc + CHCl ₃ + NaOH –		
77.	In the reaction	,	the	electrophile involved is
	1) dichloromethyl	cation $\begin{pmatrix} \oplus \\ C HCl_2 \end{pmatrix}$	2) dichlorometh	$anion\left(\begin{matrix} \oplus \\ C HCl_2 \end{matrix} \right)$
	3) formyl cation $\left(\right)$	$\stackrel{\oplus}{C}HO$	4) dichlorocarbe	ene $(:CCl_2)$
	Vary 4			

Key : 4

Solution : Conceptual

- 78. Carboxylic acids have higher boiling points than aldehydes, ketone and even alcohols of comparable molecular mass. It is due to heir
 - 1) Formation of intramolecular H-bonding
 - 2) More extensive association of carboxylic acid via van der Waals force of attraction
 - 3) Formation of carboxylate ion
 - 4) Formation of intermolecular H- bonding.

Key : 4 Solution : Conceptual

79. Compound A, C₈H₁₀O, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell. A and Y are respectively.

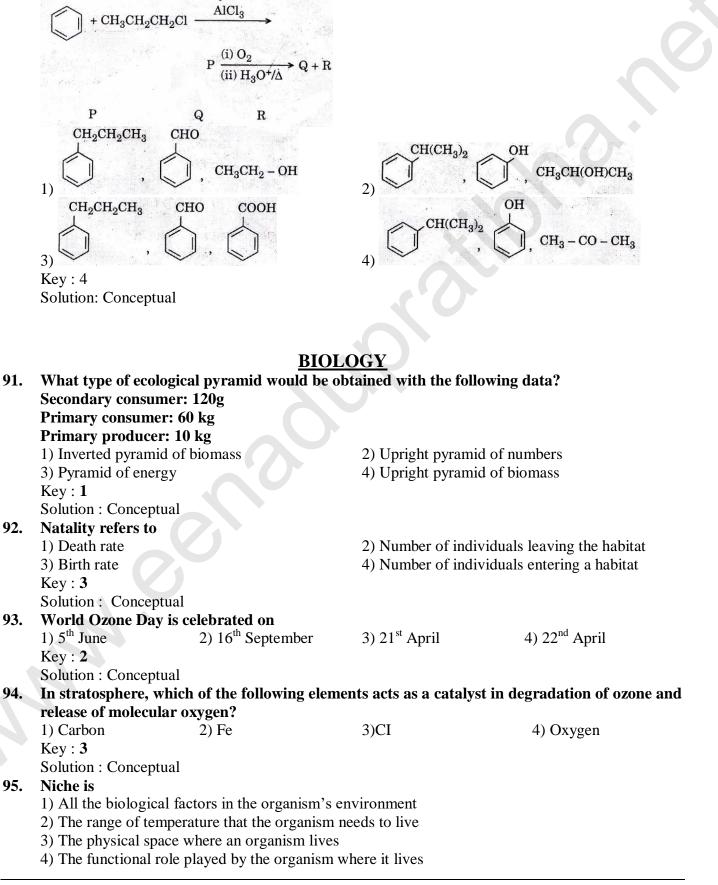
1)
$$H_3C \longrightarrow CH_2 - OH \text{ and } I_2$$

3) $O \to CH_2 - CH_2 - OH \text{ and } I_2$
() $CH_2 - CH_2 - OH \text{ and } I_2$
() $CH_3 - OH \text{ and } I_2$

Solution : Conceptual

80. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code:

Column I	Column II
A) <i>CO</i> ³⁺	I) $\sqrt{8}$ B. M.
B) <i>Cr</i> ³⁺	II) $\sqrt{35}$ B. M.
C) Fe^{3+}	III) $\sqrt{3}$ B. M.
D) Ni^{2+}	IV) $\sqrt{24}$ B. M
	V) $\sqrt{15}$ B. M.


	SRIGAYATRI EDUCATIONAL INSTITUTIONS
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1) IV V II I 2) IV I II 3) I II III IV 4) III V I
	Key: 1
	Solution : $\sqrt{n(n+2)}$ B.M
81.	Iron carbonyl, $Fe(CO)_5$ is
010	1) tetranuclear2) trinuclear3) mononuclear4) dinuclear
	Key : 3
	Solution : Conceptual
82.	The geometry and magnetic behavior of the complex $\left[Ni(CO)_{4}\right]$ are
	1) square planar geometry and diamagnetic 2) square planar geometry and paramagnetic
	3) tetrahedral geometry and paramagnetic4) tetrahedral geometry and paramagnetic
	Key: 3 Solution - Concentual
83.	Solution : Conceptual Which one of the following ions exhibits d-d transition and paramagnetism as well ?
	1) CrO_4^{2-} 2) MnO_4^{-} 3) $Cr_2O_7^{2-}$ 4) MnO_4^{2-}
	$\operatorname{Key}:4$
	Solution : Conceptual
84.	The type of isomerism shown by the complex $\left\lceil COCl_2(en)_2 \right\rceil$ is
	1) Geometrical isomerism 2) Ionization isomerism
	3) Coordination isomerism 4) Linkage isomerism
	Key : 1
0 <i>7</i>	Solution : Conceptual
85.	Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations.
	1) $60mL\frac{M}{10}HCl+40mL\frac{m}{10}NaOH$ 2) $55mL\frac{M}{10}HCl+45mL\frac{m}{10}NaOH$
	2) 75 mL M UCL 25 mL m NoOL
	3) $75\text{mL}\frac{M}{5}\text{HCl}+25\text{mL}\frac{m}{5}\text{NaOH}$ 4) $100\text{mL}\frac{M}{10}\text{HCl}+100\text{mL}\frac{m}{10}\text{NaOH}$
	Key:4
	Solution : Conceptual
86.	On which of the following properties does not coagulating power of an ion depend? 1) The magnitude of the charge on the ion alone
	2) Both magnitude and sign of the charge on the ion
	3) Size of the ion alone 4) The sign of charge on the ion alone
	Key:2
	Solution : Conceptual
87.	The solubility of $BaSO_4$ in water is $2.42 \times 10^3 gL^{-1}$ at 298 K. The value of its solubility product
	(K_{sp}) will be (Given molar mass of $BaSO_4 = 233 \ g \ mol^{-1}$)
	1) $1.08 \times 10^{-10} mol^2 L^{-2}$ 2) $1.08 \times 10^{-14} mol^2 L^{-2}$
	3) $1.08 \times 10^{-12} mol^2 L^{-2}$ 4) $1.08 \times 10^{-8} mol^2 L^{-2}$
	Key: 1
20	Solution : Conceptual C_{iven} which are of the following gases is
88.	Given van der Waals constant for NH_3, H_2, O_2 and CO_2 , which one of the following gases is most apply liquefied?
	most easily liquefied?1) NH_3 2) O_2 3) H_2 4) CO_2
	1) NH_3 2) O_2 3) H_2 4) CO_2 Key : 1
	Solution : Conceptual

- 89. Which of the following compounds can form a zwitterion?

 Aniline
 Benzoic acid
 Acetanilide
 Glycine

 Key : 4
 Solution : Conceptual
- 90. Identify the major products P,Q and R in the following sequence of reactions

Anhydrous

	SRIGAYATRI EDUCATI	ONAL INSTITU	TIONS
	Key : 4		
	Solution : Conceptual	_	
96.	Which of the following is a secondary polluta		
	1) <i>CO</i> 2) <i>SO</i> ₂	3) <i>CO</i> ₂	4) <i>O</i> ₃
	Key : 4		
	Solution : Conceptual		
97.	What is the role of NAD^+ in cellular respirati	on?	
	1) It functions as an enzyme		source for ATP synthesis
	3) It functions as an electron carrier	,	2
	4) It is the final electron acceptor for anaerobic	respiration	
	Key : 3	1	
	Solution : Conceptual		
8.	Oxygen is not produced during photosynthes	is by	
	1) Green sulphur bacteria	2) Cycas	
	3) Nostoc	4) Chara	
	Key : 1	,	
	Solution : Conceptual		
9.	Which one of the following plants shows a	very close relations	ship with a species on month,
	where none of the two can complete its life cy		
	1) <i>Hydrilla</i> 2) Banana	<i>3) Yucca</i>	4) Viola
	Key : 3		
	Solution : Conceptual		
00.	In which of the following forms is iron absor	bed by plants?	
	1) Ferric	2) Free element	
	3) Ferrous	4) Both ferric and	ferrous
	Key : 1		
	Solution : Conceptual		
01.	Which of the following element is responsible	e for maintaining tu	rgor in cells?
	1) Magnesium 2) Potassium	3) Sodium	4) Calcium
	Key : 2		
	Solution : Conceptual		
.02.	Double fertilization is		
	1) Fusion of two male gametes of a pollen tube	with two different eg	ggs
	2) Fusion of two male gametes with one egg		
	3) Fusion of one male gamete with two polar nu	iclei	
	4) Syngamy and triple fusion		
	Key : 4		
	Solution : Conceptual		
. 03.	Pollen grains can be stored for several years		
	1) $-120^{\circ}C$ 2) $-196^{\circ}C$	3) $-80^{\circ}C$	4) $-160^{\circ}C$
	Key : 2		
	Solution : Conceptual		
.04.	The stage during which separation of the pai		
	1) Pachytene2) Diakinesis	3) Diplotene	4) Zygotene
	Key : 3		
	Solution : Conceptual		
.05.	Which of the following is true for nucleolus?		
	1) Larger nucleoli are present in dividing cells	2) It takes part in s	-
	3) It is a membrane- bound structure	4) It is a site for ac	ctive ribosomal RNA synthesis
	Key : 4		
	Solution : Conceptual		

SRIGAYATRI EDUCATIONAL I	NSTITUTIONS
--------------------------	-------------

1) Saccharomyces	2) Nostoc	3) Mycobacterium	$(1) O_{2,2} : [1]_{2,2} : [1]_{2,2}$
	2)1105100	5) Mycobacterium	4) Oscillatoria
Key : 1			
Solution : Conceptual			
Stomatal movement	is not affected by		
1) Temperature	2) O_2 concentration	3) Light	4) CO_2 concentration
Key : 2			
Solution : Conceptual			
Stomata in grass leaf	are		
1) Dumb- bell shaped	2) Rectangular	3) Kidney shaped	4) Barrel shaped
Key : 1			
-			
		-	
/ /		2) Carbonyl and phosp	
	yl	4) Carbonyl and hydro	oxyl
•			
-			
•		· · · · · ·	
	ory vesicles	4) Activation of amino	aicd
•			
,	2) NADPH	3) NADH	4) Oxygen
-			
_	,		
-	-		4) D
,	2) Parthenocarpy	3) WIITOTIC divisions	4) Parthenogenesis
-	omont.		
		2) Spliggggggggggggggggg	nort in translation
·	Ű	/ I	part III translation
, 1		CICILLIST	
	iscovered by S.Aitiliall		
•			
	ng has proved helpful in	nreserving nollen as for	ssils?
			4) Sporopollenin
· ·	-) on content		", Sporopononini
-			
-	tch:		
		- Streptococcus pneun	noniae
	And F. Stahl	- Pisum sativum	
		- TMV	
		- Lac operon	
	Ĩ	L	
•			
-	oof for semiconservative	e replication of DNA wa	s first shown in a
		2) Plant	
1) Fungus			
 Fungus Bacterium 		4) Virus	
	Stomatal movement if 1) Temperature Key : 2 Solution : Conceptual Stomata in grass leaf 1) Dumb- bell shaped Key : 1 Solution : Conceptual The two functional gr 1) Hydroxyl and methy Key : 4 Solution : Conceptual The Golgi complex pr 1) Fatty acid breakdow 3) Formation of secret Key : 3 Solution : Conceptual Which of the followir 1) ATP Key : 3 Solution : Conceptual Offsets are produced 1)Meiotic divisions Key : 3 Solution : Conceptual Offsets are produced 1)Meiotic divisions Key : 3 Solution : Conceptual Select the correct stat 1) Franklin Stahl coine 3) Punnett square was 4) Transduction was d Key : 3 Solution : Conceptual Select the correct stat 1) Franklin Stahl coine 3) Punnett square was 4) Transduction was d Key : 3 Solution : Conceptual Solution : Conceptual Which of the followir 1) Pollenkitt Key : 4 Solution : Conceptual Select the Correct ma 1) Alec Jeffreys 2) Matthew Meselson 3) Alfred Hershey and	Stomatal movement is not affected by1) Temperature2) O_2 concentrationKey : 2Solution : ConceptualStomata in grass leaf are1) Dumb- bell shaped2) RectangularKey : 1Solution : ConceptualThe two functional groups characteristic of s1) Hydroxyl and methyl3) Carbonyl and methyl3) Carbonyl and methyl3) Carbonyl and methyl(Key : 4Solution : ConceptualThe Golgi complex participates in1) Fatty acid breakdown3) Formation of secretory vesiclesKey : 3Solution : ConceptualWhich of the following is not a product of lig1) ATP2) NADPHKey : 3Solution : ConceptualOffsets are produced by1)Meiotic divisions2) ParthenocarpyKey : 3Solution : ConceptualSelect the correct statement:1) Franklin Stahl coined the term" linkage"3) Punnett square was developed by a British s4) Transduction was discovered by S.AltmanKey : 3Solution : ConceptualWhich of the following has proved helpful in1) Pollenkitt2) Oil contentKey : 4Solution : ConceptualSelect the Correct match:1) Alec Jeffreys2) Matthew Meselson And F. Stahl3) Alfred Hershey and Martha Chase4) Francois Jacob and Jacques MonodKey : 4	Stomatal movement is not affected by 1) Temperature 2) O2 concentration 3) Light Key : 2 Solution : Conceptual Stomata in grass leaf are 3) Kidney shaped Stomata in grass leaf are 3) Kidney shaped 3) Kidney shaped Stomata in grass leaf are 3) Kidney shaped Stomation : Conceptual 2) Carbonyl and phose The Golgi complex participates in 4) Carbonyl and hydro Solution : Conceptual 2) Respiration in bacted Solution : Conceptual 2) Respiration in bacted Which of the following is not a product of light reaction of photosym 3) NADH Key : 3 3 Solution : Conceptual 3) NADH Offsets are produced by 3) Mitotic divisions Key : 3 3) Nations Solution : Conceptual 3) Mitotic divisions Solution : Conceptual 3) Concent Mitotic divisions 2) Parthenocarpy 3) Mitotic divisions <tr< td=""></tr<>

		GAYATRI EDUCATIO		O N S
117.		g flowers only once in its		
	1) Bamboo species	2) Mango	3) Jackfruit	4) Papaya
	Key :1			
	Solution : Conceptual			
18.		g pairs is <i>wrongly</i> match	ed?	
	1)Starch synthesis in pe			
	2) XO type sex determine			
	3) ABO blood grouping			
	4) T.H. Morgan - Linka	ige		
	Key : 1			
	Solution : Conceptual			
19.	Winged pollen grains	-		
	1) Mustard	2) Mango	3) Cycas	4) Pinus
	Key : 4			
• •	Solution : Conceptual			
20.		wed by meiosis, spores a	- 0	-
	1) Neurospora	2) Agaricus	3) Alternaria	4) Saccharomyces
	Key : 2			
.	Solution : Conceptual	4 1 10		
21.	Which one is <i>wrongly</i>			
	1) Uniflagellate gamete		2) Gemma cups - Ma	
	3) Biflagellate zoospore	es - Brown algae	4) Unicellular organis	sm - Chlorella
	Key : 1			
••	Solution : Conceptual			
22.	_	in Column I with those	in Column II and sel	ect the <i>correct</i> option given
	below:			
	Column –I	Column-II		1 / 1 / 1
	a. Herbarium	i. It is a place having a c	ollection of preserved	plants and animals
	b. Key		•	pecies found in an area with
		brief description aiding	Identification	
	c. Museum	iii. Is a place where dried	d and pressed plant spe	ecimens mounted on sheets
		are kept.		
	d. Catalogue	iv A booklet containing	a list of characters and	l their alternates which are
	u. Catalogue	helpful identification of		then alternates which are
	a b	c d	various taxa.	
	a b	c u		
	1. i iv	iii ii		
	2. ii iv			
	2. II IV 3. III II	i iv		
	4. iii iv	i ii		
	Key: 4			
	Solution : Conceptual			
23.		phloem in dicot stem are	e produced by	
	1) Apical meristems	2) Phellogen	3) Vascular cambium	4) Axillary meristems
	Key : 3	_) I 1101105011		i i i i i i i i i i i i i i i i i i i
	Solution : Conceptual			
24.	Pneumatophores occu	r in		
- **	1) Halophytes		2) Carnivorous plants	
	3) Free- floating hydroj	ohvtes	4) Submerged hydro	
	Key: 1	r J ~	,	r <i>J</i>
	Solution : Conceptual			
	23	NEET 2018 :: PAPE		06 May 2018

125.				
	Sweet potato is a 1	modified		
	1)Stem	2) Tap root	3) Adventitious root	4) Rhizome
	Key : 3			
	Solution : Concept	ual		
126.	Which of the follo	wing statements is corre	ct?	
	1) Ovules are not e	nclosed by ovary wall in	gymnosperms	
	2) Horsetails are gy			
		terosporous, while Salvin	ia is homosporous.	
		y unbranched in both Cyd		
	Key : 1	,		
	Solution : Concept	ual		
127.	Select the <i>wrong</i> s			
		ent in members of Fungi	and Plantae.	
	_	_	structures in Sporozoans.	
	· •	ong to Basidiomycetes	structures in sporozouns.	
			ell in all kingdoms except M	Ionera
	Key : 2	e the powerhouse of the c	en in un kingdoms except in	loneru
	Solution : Concept	nal		
128	Casparian strips of			
120.	1) Epidermis	2) Cortex	3) Pericycle	4) Endodermis
	Key: 4	2) Contex	5) Terreyere	+) Endodermis
	Solution : Concept	ual		
120	_	e or no secondary grow	th ara	
127.	1) Grasses	e of no secondary grow	2) Conifers	
	3) Deciduous angio)snerms	4) Cycads	
	Key : 1	sperms	+) Cycaus	
	Solution : Concept	uol		
120	1		a foreign company, though	, such variatios have been
130.		or a long time. This is re		i such varieties have been
	present in mula it	-	3) Sharbati Sonora	1) Decmeti
	1) C_{0-} 667	71 Lerma ROIO		
	1) Co- 667 Key : 4	2) Lerma Rojo	3) Sharbati Sohora	4) Basmati
	Key : 4		5) Sharbati Sonora	4) Dasmati
121	Key : 4 Solution : Concept	ual		
131.	Key : 4 Solution : Concept Which of the foll	ual owing is commonly use	ed as a vector for introdu	
131.	Key : 4 Solution : Concept Which of the foll human lymphocyt	ual owing is commonly use tes?	ed as a vector for introdu	cing a DNA fragment in
131.	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus	ual owing is commonly use		
131.	Key : 4 Solution : Concept Which of the foll human lymphocy(1) Retrovirus Key : 1	ual owing is commonly use tes? 2) λ phage	ed as a vector for introdu	cing a DNA fragment in
	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept	ual owing is commonly use tes? 2) λ phage ual	ed as a vector for introdu 3) Ti plasmid	acing a DNA fragment in 4) pBR 322
	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org	ual owing is commonly use tes? 2) λ phage ual ganization responsible	ed as a vector for introdu	acing a DNA fragment in 4) pBR 322
	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism	ual owing is commonly use tes? 2) λ phage ual ganization responsible ns for public use is	ed as a vector for introdu 3) Ti plasmid for assessing the safety o	acing a DNA fragment in 4) pBR 322
	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of	ual owing is commonly use tes? 2) λ phage ual ganization responsible ns for public use is of Medical Research (ICM	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR)	acing a DNA fragment in 4) pBR 322
	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of 2) Research Comm	ual owing is commonly use tes? 2) λ phage ual ganization responsible ns for public use is of Medical Research (ICM hittee on Genetic Manipul	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR) ation (RCGM)	acing a DNA fragment in 4) pBR 322
	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of 2) Research Comm 3) Council for Scie	ual lowing is commonly use tes? 2) λ phage ual ganization responsible ns for public use is of Medical Research (ICM ittee on Genetic Manipul ntific and Industrial Rese	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR) ation (RCGM) arch (CSIR)	acing a DNA fragment in 4) pBR 322
	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of 2) Research Comm 3) Council for Scie 4) Genetic Enginee	ual owing is commonly use tes? 2) λ phage ual ganization responsible ns for public use is of Medical Research (ICM hittee on Genetic Manipul	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR) ation (RCGM) arch (CSIR)	acing a DNA fragment in 4) pBR 322
	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of 2) Research Comm 3) Council for Scie 4) Genetic Engineer Key : 4	ual owing is commonly use tes? 2) λ phage ual ganization responsible ns for public use is of Medical Research (ICM ittee on Genetic Manipul ntific and Industrial Rese ering Appraisal Committe	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR) ation (RCGM) arch (CSIR)	acing a DNA fragment in 4) pBR 322
32.	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of 2) Research Comm 3) Council for Scie 4) Genetic Engineet Key : 4 Solution : Concept	ual owing is commonly use tes? 2) λ phage ual ganization responsible ns for public use is of Medical Research (ICM hittee on Genetic Manipul ntific and Industrial Rese ering Appraisal Committee ual	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR) ation (RCGM) arch (CSIR)	acing a DNA fragment in 4) pBR 322
132.	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of 2) Research Comm 3) Council for Scie 4) Genetic Enginee Key : 4 Solution : Concept Select the correct	ual owing is commonly use tes? 2) λ phage ual ganization responsible ins for public use is of Medical Research (ICM ittee on Genetic Manipul ntific and Industrial Rese ering Appraisal Committee ual match:	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR) ation (RCGM) arch (CSIR)	acing a DNA fragment in 4) pBR 322
132.	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of 2) Research Comm 3) Council for Scie 4) Genetic Enginee Key : 4 Solution : Concept Select the <i>correct</i> of 1) Ribozyme - Nuc	ual owing is commonly use tes? 2) λ phage ual ganization responsible ns for public use is of Medical Research (ICM ittee on Genetic Manipul ntific and Industrial Rese ering Appraisal Committee ual match: eleic acid	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR) ation (RCGM) arch (CSIR)	acing a DNA fragment in 4) pBR 322
132.	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of 2) Research Comm 3) Council for Scie 4) Genetic Enginee Key : 4 Solution : Concept Select the <i>correct</i> of 1) Ribozyme - Nuc 2) T.H. Morgan - T	ual owing is commonly use tes? 2) λ phage ual ganization responsible ns for public use is of Medical Research (ICM ittee on Genetic Manipul ntific and Industrial Rese ering Appraisal Committee ual match: Eleic acid Transduction	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR) ation (RCGM) arch (CSIR)	acing a DNA fragment in 4) pBR 322
132.	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of 2) Research Comm 3) Council for Scie 4) Genetic Enginee Key : 4 Solution : Concept Select the <i>correct</i> of 1) Ribozyme - Nuc 2) T.H. Morgan - T	ual owing is commonly use tes? 2) λ phage ual ganization responsible ns for public use is of Medical Research (ICM ittee on Genetic Manipul ntific and Industrial Rese ering Appraisal Committee ual match: eleic acid	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR) ation (RCGM) arch (CSIR)	acing a DNA fragment in 4) pBR 322
132.	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of 2) Research Comm 3) Council for Scie 4) Genetic Enginee Key : 4 Solution : Concept Select the <i>correct</i> of 1) Ribozyme - Nuc 2) T.H. Morgan - T	ual lowing is commonly use tes? 2) λ phage ual ganization responsible ins for public use is of Medical Research (ICM ittee on Genetic Manipul ntific and Industrial Rese ering Appraisal Committee ual match: eleic acid Transduction parent - Dihybrid cross	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR) ation (RCGM) arch (CSIR)	acing a DNA fragment in 4) pBR 322
132.	Key : 4 Solution : Concept Which of the foll human lymphocyt 1) Retrovirus Key : 1 Solution : Concept In India, the org modified organism 1) Indian Council of 2) Research Comm 3) Council for Scie 4) Genetic Enginee Key : 4 Solution : Concept Select the <i>correct</i> of 1) Ribozyme - Nuc 2) T.H. Morgan - T 3) $F_2 \times$ Recessive p	ual lowing is commonly use tes? 2) λ phage ual ganization responsible ins for public use is of Medical Research (ICM ittee on Genetic Manipul ntific and Industrial Rese ering Appraisal Committee ual match: eleic acid Transduction parent - Dihybrid cross	ed as a vector for introdu 3) Ti plasmid for assessing the safety o IR) ation (RCGM) arch (CSIR)	acing a DNA fragment in 4) pBR 322

SRIGAYATRI EDUCATIONAL INSTITUTIONS

	The correct	order of st	eps in Polym	erase Cha	in Reaction (PCR) is		
	1) Extensior	, Denaturati	on, Annealing	5	2) Denaturation, Extension, Annealing		
	3) Annealing	g, extension,	Denaturation	l	4) Denaturation, Annealing, Extension		
	Key : 4						
	Solution : C	onceptual					
135.	Use of bior	esources by	multination	al compan	ies and organization w	ithout authorization from	
	the concern	ed country	and its peopl	le is called			
	1) Bio- infri	ngement	2) Biodegrad	ation	3) Biopiracy	4) Bioexploitation	
	Key : 3						
	Solution : C	onceptual					
136.	The transpa	arent lens ir	the human	eye is held	in its place by		
	1) ligaments	attached to	the ciliary bo	dy	2) smooth muscles atta	ached to the iris	
	3) ligaments	attached to	the iris	•	4) smooth muscles atta	ached to the ciliary body	
	Key : 1				,		
	Solution : C	onceptual					
137.		-	hormones ca	n plav a s	ignificant role in osteo	porosis?	
	1) Aldostero			Ĩ	2) Estrogen and Parath		
	3) Progester	one and Ald	osterone		4) Parathyroid hormon		
	Key : 2				, ,		
	Solution : C	onceptual					
138.		-	structures of	r region is	incorrect paired with i	ts functions?	
		-		-	ardiovascular reflexes		
		-	-		ones and regulation of te	mperature, hunger and	
	thirst						
		stem : Cons	sists of fibre tr	acts that ir	nterconnect different regi	ions of brain: controls	
	moveme						
			nd of fibers co	nnecting le	eft and right cerebral her	nispheres	
	Key : 3			inteeting it	en und right corcerui her	inspireres	
	Solution : C	oncentual					
139			is an amino	acid deriv	ed hormone?		
1071	1) Epinephri	-	2) Estradiol		3) Ecdysone	4) Estriol	
	Key: 1		2) Estrución		5) Ledysone		
	Solution : C	oncentual					
140		-	part of and	oneron er	cont		
140.	1) an operate		2) an enhance		3) structural genes	4) a promoter	
	Key : 2	Л	2) an enhance		5) structural genes	4) a promoter	
	Solution : C	oncentual					
1/1		•	a saguanga	from the	ading strand of a	gene. What will be the	
141.			a sequence e of the trans			gene. What will be the	
					3) UGGTUTCGCAT	4) UCCAUAGCGUA	
		JUUUAU	2) ACCUAU	UCUAU	J) UUUIUUUUU		
					,	+) ecenterioeden	
	Key:1					+) beenondedon	
147	Key : 1 Solution : C	onceptual	in Column I	with those	in Column II and colo		
142.	Key : 1 Solution : C Match the i	onceptual	in Column I	with those	e in Column II and sele		
142.	Key : 1 Solution : C Match the i below	onceptual	in Column I	with those			
142.	Key : 1 Solution : C Match the i below Column I	onceptual tems given	in Column I	with those	Column II	ct the <i>correct</i> option given	
142.	Key : 1 Solution : C Match the i below Column I a. Prolifera	onceptual tems given tive Phase	in Column I	with those	Column II i. Breakdown of endo	ct the <i>correct</i> option given	
142.	Key : 1 Solution : C Match the i below Column I a. Prolifera b. Secretory	onceptual tems given tive Phase 7 Phase	in Column I	with those	Column II i. Breakdown of endo ii. Follicular Phase	ct the <i>correct</i> option given	
142.	Key : 1 Solution : C Match the i below Column I a. Prolifera	onceptual tems given tive Phase 7 Phase ation			Column II i. Breakdown of endo	ct the <i>correct</i> option giver	
142.	Key : 1 Solution : C Match the i below Column I a. Prolifera b. Secretory c. Menstrua	onceptual tems given tive Phase 7 Phase ation a	b	c	Column II i. Breakdown of endo ii. Follicular Phase	ct the <i>correct</i> option giver	
142.	Key : 1 Solution : C Match the i below Column I a. Prolifera b. Secretory	onceptual tems given tive Phase 7 Phase tion a iii	b ii	c i	Column II i. Breakdown of endo ii. Follicular Phase	ct the <i>correct</i> option giver	
142.	Key : 1 Solution : C Match the i below Column I a. Prolifera b. Secretory c. Menstrua	onceptual tems given tive Phase 7 Phase ation a	b	c	Column II i. Breakdown of endo ii. Follicular Phase	ct the <i>correct</i> option given	
142.	Key : 1 Solution : C Match the i below Column I a. Prolifera b. Secretory c. Menstrua 1)	onceptual tems given tive Phase 7 Phase tion a iii	b ii	c i	Column II i. Breakdown of endo ii. Follicular Phase	ct the <i>correct</i> option given	
142.	Key : 1 Solution : C Match the i below Column I a. Prolifera b. Secretory c. Menstrua 1) 2)	onceptual tems given tive Phase Phase tion a iii iii	b ii iii	с і і	Column II i. Breakdown of endo ii. Follicular Phase	ct the <i>correct</i> option giver	

	SRIC	JAYAIRI EDUCAII	UNAL INSTITUT	UNS
	Key : 2			
	Solution : Conceptual			
143.		Vries, the mechanism of		
	1) Multiple step mutation	on	2) Phenotype variation	ons
	3) Saltation		4) Minor mutaions	
	Key : 3			
	Solution : Conceptual			
144.		inked condition on one	of her X chromosom	es. This chromosome can be
	inherited by			
	1) Only daughters		2) Only grandchildre	'n
	3) Only sons		4) Both sons and day	
	Key : 4		T) Doth sons and dat	"Enters
	-			
145	Solution : Conceptual	· · · · · · · · · · · · · · · · · · ·	tod notheran source	abuania inflormation of
145.		bes mosquito transmit	tted patnogen cause	chronic inflammation of
	lymphatic vessels?	0) D' I'	a b b b b b b b b b b	
	1) Elephantiasis	2) Ringworm disease	3) Ascariasis	4) Amoebiasis
	Key : 1			
	Solution : Conceptual			
146.		sets of examples for dive		
	1) Forelimbs of man, ba	at and cheetah	2) Brain of bat, man	and cheetah
	3) Heart of bat, man and	d cheetah	4) Eye of octopus, ba	at and man
	Key : 4			
	Solution : Conceptual			
147.		g is <i>not</i> an autoimmune	disease?	
	1) Psoriasis	2) Alzheimer's disease		itis 4) Vitiligo
	Key : 2	_,		
	Solution : Conceptual			
1/18	-	structure in the forelin	nhs of many vertebrat	tas is an avample of
140,	1) Homology	2) Convergent evolutio		4) Adaptive radiation
		2) Convergent evolution	ir 5) Analogy	4) Adaptive fadiation
	Key: 1			
1.40	Solution : Conceptual			• 41 4 6
149.		curd improves its nutri		
	1) Vitamin D	2) Vitamin B_{12}	3) Vitamin A	4) Vitamin E
	Key : 2			
	Solution : Conceptual			
150.	Which of the following	g characteristic represe	nt 'Inheritance of blo	od groups' in humans?
	a) Dominance		b) Co – dominance	
	c) Multiple allele		d) Polygenic inherit	tance
	1) b, c and e	2) b, d and c	3) a, b and c	4) a, c and e
	Key : 3			
	Solution : Conceptual			
151.		llowing population inf	teractions is widely i	in medical science for the
1011	production of antibiot			
	1) Commensalism	2) Parasitism	3) Mutualism	4) Amensalism
	Key: 4	2) I di distristi	5) Widdunishi	+) / Amensansm
		accondiction between	ranism of two diffe	rant spacias in which one is
			-	rent species in which one is
150	•	nd the other is unaffected		
152.	0	e included in 'Ex – situ	-	
	· •	2) Botanical gardens	3) Sacred groves	4) Seed banks
	Key : 3			
	Solution : Conceptual			

153. Match the items given in Column I with those in Column II and select the *correct* option given below

	-	-	-				
(Г	0	h	n	m	n	T

- a. Eutrophication
- b. Sanitary landfill
- c. Snow blindness
- d. Jhum cultivation

Column II i. UV – B radiation ii. Deforestation iii. Nutrient enrichment iv. Waste disposal

	a	b	С	d
1)	ii	i	iii	iv
2)	iii	iv	i	ii
3)	i	iii	iv	ii
4)	i	ii	iv	iii

Key : 2

Solution : Conceptual

154. In a growing population of a country,

1) pre – reproductive individuals are more than the reproductive individuals

2) reproductive and pre – reproductive individuals are equal in number.

3) reproductive individuals are less than the post – reproductive individuals

4) pre – reproductive individuals are less than the reproductive individuals

Key : **1**

Solution :

155. Which part of poppy plant is used to obtain the drug 'Smack'?

1) Flowers	2) Roots	3) Latex	4) Leaves
Key : 3			

Solution : Conceptual

156. Hormones secreted by the placenta to maintain pregnancy are

hCG, hPL, progestogens, prolactin
 hCG, hPL, estrogens, relaxin, oxytocin
 Key : 2

Solution : Conceptual

157. The contraceptive 'SAHELI'

1) blocks estrogen receptors in the uterus. Preventing eggs from getting implanted

2) is an IUD

3) increases the concentration of estrogen and prevent ovulation in females

4) is a post – coital contraceptive

Key : 1

Solution : SAHELI has unique combination of weak estrogenic and potent anti estrogenic properties. It does not disturb the endocrine system and the normal ovulatory cycle is maintained. It inhibits fertilized ovum from being implanted.

158. The amnion of mammalian embryo is derived from

1) ectoderm and mesoderm	
3) endoderm and mesoderm	

2) mesoderm and trophoblast

4) ectoderm and endoderm

Key : 1

Solution : Amnion is derived from somotopleure, which is derived from ectoderm and mesoderm

159. The difference between spermiogensis and spermiation is

1) In spermiogenesis spermatids are formed, while in spremiation spermatozoa are formed

2) In spermiogenesis spermatozoa from sertoli cells are released into the cavity of seminiferous tubules, while in spermiation spermatozoa are formed

3) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed

4) In spermiogenesis spermatozoa are formed, while in spermiation spermatozoa are released from sertoli cells into cavity of seminieferous tubules.

Key : **4**

Solution : Conceptual

160. Which of the following options correctly represents the lunge conditions in asthma and emphysema, respectively?

- 1) Inflammation of bronchioles; Decreased respiratory surface
- 2) Increased respiratory surface; Inflammation of bronchioles
- 3) Increased number of bronchioles; Increased respiratory surface
- 4) Decreased respiratory surface; Inflammation of bronchioles

Key : 1

Solution : Conceptual

- 161. Match the items given Column I with those in Column II and select the correct option given below:
 - **Column I**

Column II

a. Tricuspid valve

b. Bicuspid valve

i. Between left atrium and left ventricle

ii. Between right ventricle and pulmonary artery

c. Semilunar valve iii. Between right atrium and right ventricle

	а	b	С
1)	iii	i	ii
2)	i	ii	iii
3)	i	iii	ii
4)	ii	i	iii

Key : 1

Solution : Conceptual

162. Match the items given Column I with those in Column II and select the correct options given below:

-	ory Reserve ry Reserve v		i i i	Column II i. 2500 – 3000 ii. 1100 – 120 iii. 500 – 550 iv. 1000 – 110	00 mL mL
	а	b	С	d	
1)	iii	ii	i	iv	
2)	i	iv	ii	iii	
3)	iii	i	iv	Ii	
4)	iv	iii	ii	i	

Key : 3

Solution : Conceptual

163. Match the items given in Column I with those in Column II and select the correct option given

below:					
Column I		Column II (<i>Part of Ex</i> i. Henle's l ii. Ureter			
(Function)					
a. Ultrafilt					
b. Concent					
c. Transpor	rt of urine			iii. Urinar	
d. Storage	of urine			iv. Malpig	
				v. Proxima	
	a	b	с	d	
1)	iv	v	ii	iii	
2)	v	iv	i	ii	

i

iv

Key : **3**

3)

4)

Solution : Conceptual

iv

v

ii

i

Ι

iii

iii

xcretory System) loop y bladder ghian corpuscle al convoluted tubule

164. Match the items given in Column I with those in Column II and select the correct option given below:

- **Column I**
- a. Glycosuria
- **b.** Gout
- c. Renal calculi d. Glomerular nephritis

Column II

- i. Accumulation of uric acid in joints
- ii. Mass of crystallised salt within the kidney
- iii. Inflammation in glo meruli
- iv. Presence of glucose in urine

	а	b	С	d
1)	iii	ii	iv	i
2)	ii	iii	i	iv
3)	i	ii	iii	iv
4)	iv	i	ii	iii

Key : 4

Solution : Conceptual

165. Which of the following is an occupational respiratory disorder?

1) Anthracis 2) Botulism 3) Silicosis 4) Emphysema

Key : **3**

Solution : Conceptual

166. Calcium is important in skeletal muscle contraction because it

1) binds to troponin to remove the masking of active sites on actin for myosin

2) detaches the myosin head from the actin filament

3) activates the myosin ATP ase binding to it

4) prevents the formation of bonds between the myosin cross bridges the actin filament

Key : 1

Solution : Conceptual

167. Match the items given in Column I with those in Column II and select the correct option given below:

Column	I
Column	I

- a. Fibrinogen
- **b.** Globulin
- c. Albumin

Column II i. Osmotic balance

- ii. Blood clotting
- iii. Defence mechanism

	а	b	с
1)	iii	ii	i
2)	i	iii	ii
3)	i	ii	iii
4)	ii	iii	i

Key : 4

Solution : Conceptual

168. Which of the following gastric cells indirectly help in erythropoiesis?

1) Chief cells

2) Goblet cells 4) Parietal cells

3) Mucous cells Key : 4

Solution : Parietal cells secrete castle's intrinsic factor which helps maturation of RBC

169. Which of these statements is incorrect?

- 1) Enzymes of TCA cycle are present in mitochondrial matrix
- 2) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
- 3) Glycolysis occurs in cytosol
- 4) Oxidative phosphorylation takes place in outer mitochondrial membrane
- Key : 4

Solution : Conceptual

	5111		ONAL INSTITUTIO					
170.	Many ribsomes may associate with a single mRNA to form multiple copies of a polypeptide							
		strings of ribosomes ar						
	1) Polysome	2) Plastidome	3) Polyhedral bodies	4) Nucleosome				
	Key : 1							
. – .	Solution : Conceptual							
171.	Which of the following terms describe human dentition?							
	1) Thecodont, Diphyod	yodont, Homodont						
	3)Thecodont, Diphyodo	ont, Heterodont	4) Pleurodont, Diphyodont, Heterodont					
	Key : 3							
	Solution : Conceptual							
172.	Select the incorrect ma							
	1) Lampbrush- Diploter		2) Submetacentric – L- shaped chromosomes					
	3) Allosomes – Sex chr	omosome	4) Polytene – Oocytes	of amphibians				
	Key : 4							
	Solution : Conceptual							
173.	Nissl bodies are mainl	y composed of						
	1) Proteins and lipids		2) Nucleic acids and SI					
	3) DNA and RNA		4) Free ribosomes and	RER				
	Key : 4							
	Solution : Conceptual	_						
174.		g events does not occur	in rough endoplasmic re					
	1) Protein folding		2) Cleavage of signal peptide					
	3) Protein glycosylation	1	4) Phospholipid synthe	sis				
	Key : 4							
	Solution : Conceptual							
175.	Which one of these an							
	1) Macropus	2) Camelus	3) Chelone	4) Psittacula				
	Key : 3							
187	Solution : Conceptual							
1/6.	 Which of the following features is used to identify a male cockroach from a female cockroach? 1) Presence of a boat shaped sternum on the 9th abdominal segment 							
	2) Forewings with dark		abdominal segment					
	3) Presence of caudal st	-	4) Presence of anal cere	ai				
	Key: 3	.yics	+) I reserve of anal cerv					
	Solution : Conceptual							
177	-	aroun of animals cha	racterized by crop and g	izzard in its digestive				
1//.	system.	e group of annuals cha	racterized by crop and g	izzaru in its uigestive				
	1) Amphibia	2) Aves	3) Reptilia	4) Osteichthyes				
	Key: 2	2) 11005	5) Repulla	+) Ostelentnyes				
	Solution : Conceptual							
178	Ciliates differ from all	other protozoans in						
1/0	1) Using flagella for loc		2) Using pseudopodia	for capturing prev				
			cess water 4) Having tw					
	Key: 4	vacable for reline ving er		o types of nacion				
	Solution : Conceptual							
179.		y organisms are known	as chief producers in th	e oceans?				
	1) Dinoflagellates	2) Cyanobacteria	3) Diatoms	4) Euglenoids				
	Key : 3	_) e june e ue ce i u	<i>c) 2 m</i> ^o <i>m</i>	.) _081010105				
	Solution : Conceptual							
180.	Which of the following	g animals does not und	ergo metamorphosis?					
	1) Earthworm	2) Moth	3) Tunicate	4) Starfish				
	Key : 1	,	,	,				
	Solution : Conceptual							
	I I I I I I I I I I I I I I I I I I I	***	***					

Size: 16 x 33 cm

'ඡී' అంబించినే చారు

1133323323111132413232325314132631413417441333744133383342333101111133111111133133423333143111134153331113416331111341733111133183311113319331343319331343319343333320423333321343333322433333323433	Q.No.	CODE-W	CODE-X	CODE-Y	CODE-Z	Q.No.	CODE-W	CODE-X	CODE-Y	CODE-Z
3113243314124334315142433433623333333333381111133333333101111133 </td <td>1</td> <td>1</td> <td>3</td> <td>3</td> <td>2</td> <td>91</td> <td>1</td> <td>1</td> <td>3</td> <td>2</td>	1	1	3	3	2	91	1	1	3	2
4 1 2 2 1 94 3 3 1 4 5 3 4 4 1 99 4 4 3 9 4 4 3 2 99 4 1 4 9 4 3 3 2 99 3 3 3 3 9 4 3 2 4 4 3 3 3 3 9 4 3 4 2 1 1 1 10 3 <td></td>										
5 1 4 2 4 95 4 4 4 3 7 1 1 1 1 1 97 3 4 1 4 7 1 1 1 1 1 97 3 4 1 4 7 1 2 4 1 1 97 3 4 1 4 10 1 2 4 1 1 97 3 4 3 3 10 2 4 2 2 1 3 1 2 3 3 3 10 3 1 4 2 3				-					-	
6 3 1 4 1	-						-			
71111973411483333333333944329933333331032442100231333331313331313333111<										
8 2 3 3 3 9 4 4 3 2 10 1 1 1 1 13 3 2 4 2 13 3 2 4 2 13 3 2 4 2 13 3 2 4 2 13 3 3 2 4 3 3 3 16 3<										
9 4 4 3 2 10 1 1 1 1 1 3 3 3 3 110 1 2 4 1 1 3 3 3 3 111 2 4 1 1 3 <td></td>										
10 1 1 1 1 11 1 2 4 1 13 3 2 4 2 13 3 2 4 2 15 3 4 2 2 16 3 4 2 2 16 3 4 2 2 17 4 1 4 2 10 3 3 3 1 21 2 4 1 1 11 1 1 1 1 22 3 1 1 1 1 23 4 2 3										
11 1 2 4 2 1 3 2 4 4 13 3 2 4 4 1 1 2 13 3 2 4 4 1 3 3 3 1 3 3 16 4 3 4 2 100 3 3 3 1 3 3 16 4 3<										
13 3 2 4 4 13 3 2 4 4 18 3 4 2 2 19 4 3 4 2 2 19 4 3 4 2 2 19 3 </td <td>11</td> <td>1</td> <td>2</td> <td>4</td> <td>1</td> <td>101</td> <td>2</td> <td></td> <td>3</td> <td></td>	11	1	2	4	1	101	2		3	
18 4 1 1 2 18 3 4 2 2 1 18 3 4 2 2 19 4 3 4 2 19 3 3 3 3 20 3 3 3 3 21 2 4 1 1 21 2 4 1 1 22 3 1 1 1 23 1 2 3 3 2 24 3 3 2 1 3 3 25 4 4 3 3 3 26 3 4 4 3 27 3 4 4 3 28 4 2 3 3 39 3 1 1 1 39 3 1 1 1 39 1 1 4 1 39 1 1 4 1 39 1 1 4 1 39 1 1 4 1 39 1 3 <	12	3	2	4	2	102	4	4	1	2
15 3 4 2 2 16 4 3 4 2 17 4 1 4 2 18 3 1 3 3 19 3 1 3 3 10 3 3 1 1 11 3 1 1 11 3 4 2 1 21 2 4 1 1 11 3 4 1 1 12 3 1 1 1 11 3 4 2 3 24 1 3 4 2 3 27 3 4 4 2 3 28 4 2 3 2 31 4 1 2 3 36 3 1 3 1 3 37 4 4 3 1 3 36 3 1 3 1 3 37 4 4 3 1 3 38 1 3 3 3 37 4 4 <		3	2	4	4	103	2	3	1	3
16 4 3 4 2 17 4 1 4 2 18 3 1 3 3 19 3 3 1 3 3 19 3 3 1 1 4 3 3 20 3 3 1 1 1 4 3 3 21 3 3 1 1 1 3 4 3 3 21 3 3 1 1 1 3 4 3 3 22 1 2 3 3 1 1 1 3 4 3 23 4 2 1 1 1 1 3 1 3 30 3 1 2 4 1 1 1 1 31 4 1 1 2 3 2 1 1 31 3 3 3 1 3 1 3 33 4 1 1 1 1 1 1 34 1 3 3 3 3 3 3 <td></td>										
17 4 1 4 2 18 3 1 3 3 19 3 3 1 1 20 3 3 3 1 21 2 4 1 1 22 4 1 1 23 3 2 1 3 24 1 3 1 3 24 1 3 1 3 26 3 4 4 3 27 3 4 4 3 28 4 2 3 3 30 4 1 1 1 27 3 4 4 3 31 4 1 1 1 1 31 4 1 1 1 33 4 1 1 4 33 4 1 1 1 34 1 3 1 1 1 35 1 1 4 3 3 36 1 1 4 3 3 35 1 1 4 3 <td></td>										
18 3 1 3 3 19 3 3 1 1 20 3 3 1 1 21 2 4 1 1 23 3 1 1 1 23 3 1 1 1 23 3 1 1 1 24 2 3 3 3 25 1 2 3 3 3 26 3 4 4 2 30 4 2 3 3 27 3 4 4 2 31 4 2 3 1 3 29 4 2 3 3 1 30 1 1 2 3 2 33 4 1 2 3 2 31 4 2 3 3 1 31 3 1 3 1 3 34 4 2 3 3 3 35 3 2 1 1 1 36 3 1 3 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
19 3 3 3 3 3 20 3 3 3 3 3 21 2 4 1 1 21 3 1 1 1 31 2 4 2 1 3 32 3 2 4 2 34 1 2 3 3 3 26 3 4 4 2 27 3 4 4 2 28 4 2 1 3 3 30 3 1 2 4 3 31 4 2 3 3 1 33 4 1 4 1 33 4 1 4 1 33 4 1 3 1 34 1 3 1 3 1 35 1 1 4 1 36 1 3 1 3 1 37 4 4 3 1 3 36 1 3 1 3 1 37 4 4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
20 3 3 2 21 2 4 1 10 3 4 3 1 22 3 1 1 1 23 3 2 4 2 31 3 2 3 4 3 3 23 1 3 4 4 2 35 4 4 2 3 4 2 37 4 4 2 3 3 2 30 4 2 3 3 3 30 4 1 2 3 3 31 4 1 2 4 2 31 4 1 2 4 3 31 4 1 4 3 1 33 4 3 1 3 1 33 3 1 3 1 3 36 3 1 3 1 3 36 3 1 3 3 3 36 3 2 4 3 3 36 1 2 4 3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
21 2 4 1 1 1 111 3 2 1 3 3 23 3 2 4 2 24 1 3 1 3 3 25 1 2 3 3 26 3 4 4 3 27 3 4 4 3 28 3 4 2 3 29 3 4 2 3 30 3 1 2 4 31 4 1 1 2 32 4 2 4 1 34 1 1 4 1 34 1 1 4 1 35 3 2 1 1 36 1 3 1 1 37 3 1 4 2 38 3 3 1 1 1 39 3 2 1 1 39 3 2 1 3 41 2 3 3 42 4 3 4										
22 3 1 1 1 1 1 3 3 3 23 3 2 4 2 3 3 3 3 24 1 3 1 3 1 3 4 3 3 26 3 4 4 2 3 1 1 1 1 1 27 3 4 4 2 3 3 1 3 2 28 4 2 3 3 1 1 1 1 1 29 4 2 3 3 1 3 2 3 2 19 4 1 1 1 1 1 1 1 110 4 1 1 1 1 1 1 1 111 4 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 112 3 1 3 1 3 1 3 1 113 1 3 1 1 1 1 1										
23 3 2 4 2 24 1 3 1 3 25 1 2 3 3 26 3 4 4 2 27 3 4 4 2 28 4 2 3 3 29 4 2 1 2 30 1 2 4 2 31 4 1 1 1 29 4 2 3 2 31 4 1 1 1 118 1 1 1 1 119 4 1 2 3 31 4 3 1 32 1 1 1 33 1 3 1 34 1 3 1 35 3 2 1 1 44 3 3 3 45 3 2 3 3 46 3 3 3 47 1 2 4 48 3 3 3 49 4 2 4										
1 2 3 3 26 3 4 4 3 27 3 4 4 2 28 4 2 3 3 28 4 2 3 3 28 4 2 3 3 30 3 1 2 3 2 31 4 1 1 2 3 2 31 4 1 1 2 3 2 31 4 1 1 2 3 2 33 4 2 4 3 1 3 360 3 1 3 1 3 360 3 1 3 1 3 37 4 4 3 1 3 37 4 4 3 1 3 38 1 3 3 2 1 1 1 10 1 4 3 1 3 1 40 2 4 3 3 1 3 38 1 2 4 3 3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
26 3 4 4 3 116 3 1 3 2 28 4 2 3 3 117 1 2 3 2 30 3 1 2 4 2 1 <t< td=""><td>24</td><td>1</td><td>3</td><td>1</td><td>3</td><td>114</td><td>4</td><td>2</td><td>3</td><td>2</td></t<>	24	1	3	1	3	114	4	2	3	2
27 3 4 4 2 28 4 2 3 3 29 4 2 1 2 30 3 1 2 4 31 4 1 1 2 31 4 1 1 2 3 32 4 2 4 1 33 4 1 1 4 34 4 2 3 4 35 1 1 4 1 36 3 1 3 1 36 3 1 3 1 37 4 4 3 1 38 1 1 4 4 39 3 2 4 3 44 3 2 4 3 45 1 3 3 3 46 3 2 4 3 47 1 2 4 3 48 2 4 4 50 4 2 4 44 3 1 3 52 4 3 1 </td <td>25</td> <td>1</td> <td>2</td> <td>3</td> <td>3</td> <td>115</td> <td>4</td> <td>1</td> <td>1</td> <td></td>	25	1	2	3	3	115	4	1	1	
28 4 2 3 3 29 4 2 1 2 4 3 30 3 1 2 4 3 31 4 1 1 2 3 31 4 1 1 2 3 33 4 1 1 4 3 33 4 1 4 1 1 1 4 34 1 4 1 1 1 4 35 3 1 4 1 1 1 4 39 3 1 3 1 1 4 1 199 3 2 1 1 1 1 1 41 2 3 3 3 3 390 3 2 1 3 3 42 1 4 3 43 1 4 3 44 2 4 3 45 1 3 3 3 46 1 3 1 1 47 1 2 4 4 4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
29 4 2 1 2 4 2 3 30 3 1 2 4 2 3 31 4 1 1 2 4 2 2 31 4 1 1 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 4 3 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
30 3 1 2 4 1 1 2 4 31 4 1 1 2 4 3 1										
314111111111324241141111111334114111111212351131311111212363131311 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
32 4 2 4 1 33 4 1 1 4 34 4 2 3 2 35 1 1 4 36 3 1 3 1 36 3 1 3 1 37 4 4 3 1 38 1 3 1 3 39 2 1 1 40 2 3 3 41 2 3 2 2 44 3 2 4 3 42 1 1 4 3 44 2 4 3 1 45 3 2 4 3 46 3 2 4 3 47 2 4 3 3 48 4 2 4 3 49 4 2 4 3 40 2 4 3 4 31 2 2 2 3 41 2 4 3 3 31 2 2 2 3 </td <td></td>										
33 4 1 1 4 1 13 4 4 4 35 1 1 4 1 1 2 1 2 36 3 1 3 1 3 1 3 3 38 1 3 1 3 1 3 1 3 39 3 2 1 1 4 4 4 4 41 2 3										
38 4 2 3 2 35 1 1 4 1 36 3 1 3 1 37 4 4 3 1 38 1 3 1 3 39 3 2 1 1 40 2 3 2 2 41 2 3 2 2 43 1 4 3 44 3 2 2 31 4 2 2 43 1 4 2 44 3 2 4 3 45 1 3 3 3 46 3 2 4 3 47 1 2 4 3 48 2 4 4 50 4 2 4 51 4 4 3 4 53 3 2 3 1 54 1 3 1 1 55 2 3 1 3 56 3 4 4 57 1										
35 1 1 4 1 125 3 2 1 3 36 3 1 3 1 1 125 3 2 1 3 38 1 3 1 3 1 127 2 4 4 4 38 1 3 1 3 1 127 2 4 4 4 39 3 2 1 1 1 1 1 1 1 40 2 3 3 3 3 3 3 130 4 3 2 4 3 41 3 2 4 3 3 3 3 1 3 1 42 1 4 4 1 3 1 4 4 1 46 3 2 4 3 1 137 2 4 1 1 47 1 2 4 3 1 138 3 2 1 1 46 1 2 3 1 3 1 14 1 2 2 56 3										
36 3 1 3 1 37 4 4 3 1 38 1 3 1 3 39 3 2 1 1 40 2 3 3 3 41 2 3 2 2 42 1 4 3 4 44 3 2 4 3 45 1 3 3 3 46 3 2 4 3 46 3 2 4 3 47 1 2 4 3 48 2 4 4 1 136 1 2 1 1 137 2 4 3 1 138 3 2 3 1 139 1 2 4 4 140 2 1 1 4 141 1 2 2 1 138 3 2 3 1 149 1 1 3 3 1 141 1 2 2 1 141										
38 1 3 1 3 39 3 2 1 1 40 2 3 3 3 41 2 3 2 2 42 1 1 4 3 3 3 43 1 4 2 2 1 1 3 4 1 44 3 2 4 3 3 3 3 1 3 4 1 3 2 4 3 1 4 3 2 4 3 1 4 4 3 1 4 4 3 1 3 1 3 1 3 1 3 1 3										1
39 3 2 1 1 40 2 3 3 3 41 2 3 2 2 41 2 3 2 2 42 1 4 2 2 43 1 4 2 2 44 3 2 4 3 3 3 45 1 3 3 3 3 3 133 1 4 2 46 3 2 4 1 3 1 4 4 2 4 1 46 3 1 3 1 3	37	4	4	3	1	127	2	4	4	
4023333 41 2322 42 1143 43 1422 44 3243 45 1333 46 3243 46 3243 46 3243 46 3243 46 3243 46 3243 46 3243 46 3243 50 421 41 434 51 443 52 313 54 131 55 231 56 344 44 4 44 4 44 4 42 2 56 34 33 33 58 32 33 43 59 11 11 32 56 342 44 3 166 21 11 1 11 3 22 3 12 1 13 2 23 1 14 2 24 3 15 3										
41232242114343142244324324345133463244712448244494244942450424514345243531224135333441355231563444434142222143333413435311563444433591136043161132553426212163342541325534266211161132171223662111712237032277										
A2 1 1 4 3 A3 1 4 3 3 A4 3 2 4 3 A5 1 3 3 3 A66 3 2 4 3 3 135 3 1 4 2 A7 1 2 4 3 3 33 33 135 3 1 4 2 47 1 2 4 4 1 133 1 1 133 1 4 1 1 4 2 4 3 3 1 1 133 1				-				-		
43142244324345133346324347124148244149424450421449424450421449424450421440313514435243154131552315634443158323591136621161133662116621167413762127744176212774417842792117744178427921476217744279214792179 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
44324345133463243471241482441241482444942145042145144345243135312225413155231144444225634440431574132563444662111662111662111662121774413784133792121712233762121774413784233792121762121774413784223792113 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
451333463243471241471241482441494244504214514434524311531223541311552312563444591134611331611331611332563424633435911326621116113365342774427032271223722127341366212774417842792127921176211774417841792176 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
46 3 2 4 3 47 1 2 4 3 48 2 4 4 1 49 4 2 4 4 50 4 2 1 4 51 4 4 3 4 51 4 4 3 4 51 4 4 3 4 51 4 4 3 4 51 4 4 3 4 52 4 3 1 3 54 1 3 1 3 56 3 4 4 4 55 2 3 1 3 56 3 4 4 4 13 3 2 3 58 3 2 3 1 60 4 3 1 1 61 1 3 3 62 1 2 1 2 62 1 2 1 62 1 2 1 62 1 2 1 63 3 4 2 70 3 2 2 71 2 2 3 71 2 2 3 72 1 4 3 72 2 1 2 72 2 1 2 73 4 1 3 74 3										
471241 49 2441 49 4244 50 4214 50 4214 50 4214 40 313 51 4434 100 2221 52 4313 54 1311 55 2313 54 1311 55 3444 44 442 44 443 57 413 56 344 147 223 66 132 11 11 66 211 66 211 66 211 71 223 66 211 71 223 73 4 13 73 4 13 73 4 13 77 4 4 1 77 4 4 1 77 7 4 4 77 7 4 4 78 4 2 2 77 7 4 4 <										
48 2 4 4 1 50 4 2 1 4 51 4 3 4 51 4 3 4 51 4 3 4 52 4 3 1 3 53 1 2 2 2 1 53 1 2 2 2 1 55 2 3 1 3 4 44 4 4 4 2 4 55 2 3 1 3 3 4 3 56 3 4 4 4 4 2 4 148 1 4 4 3 3 3 3 3 56 3 4 2 4 1<										
504214 51 4434 51 4313 52 4313 54 1311 55 2311 56 3444 44 442 413 334 35 231 56 344 44 442 144 443 58 323 60 431 61 133 62 121 62 121 62 121 66 211 66 211 66 211 70 322 70 322 71 212 72 212 71 223 75 114 73 413 76 2121 77 4413 78 423 79 2113 76 4223 77 4413 78 422 78 413<	48	2		4	1	138	3	2		
514434 52 4313 53 12221 53 12221 54 13111222 56 34444424 55 23111222 56 3444443 57 413231 66 313231 61 132311 61 132314 63 34311 66 21111 66 21111 66 21111 66 21111 66 21113 66 21223 71 22314 73 4133 76 11243 76 2121 77 4413 78 4233 79 2113 80 1223 77 4<	49	4	2	4	4	139	1	2	4	4
524313531222541311552313563444413457413459113256332358323160431611336212162121641321241553424316621167424155321332212366234703221136824373413743417511476211774417842379211801227744184138544277214784279<						140	2			
531222 54 1311 55 2313 56 3444 56 3444 56 3444 57 4122 58 3231 59 1132 60 4311 61 1332 62 1212 62 121 61 132 62 121 61 132 62 121 61 132 62 121 66 211 67 424 1 11 66 211 70 322 70 322 70 321 71 223 72 124 74 341 77 441 77 441 77 441 79 211 79 211 84 142 79 211 86 44 77 </td <td></td>										
541311552313563444145112257413414641435832311481443591132604311611332121262121633436421170322341166212703221111223171223734137621277441784237921179211792118012277441166124167443784237921179211801318131171443 <td></td>										
552313 56 3444 57 4134 57 4134 58 3231 59 1132 60 4311 60 4311 60 4311 61 1332 62 12123 61 1323 66 2111 67 424 67 424 67 424 66 2111 70 3222 70 3222 70 3222 71 2231 71 2231 77 4413 76 2121 77 4413 76 2121 77 4413 79 2113 79 2113 79 2113 79 2113 79 2113 79 2111 71										
56 3 4 4 4 57 4 1 3 4 57 4 1 3 4 58 3 2 3 1 59 1 1 3 2 60 4 3 1 1 60 4 3 1 1 61 1 3 2 1 61 1 2 1 2 1 2 1 2 62 1 2 1 64 1 3 2 3 4 2 4 3 1 66 2 1 1 67 4 2 4 153 2 2 2 1 1 11 1 68 2 4 70 3 2 2 2 1 2 77 3 4 71 2 2 3 1 77 4 4 73 4 1 33 4 4 76 2 1 2 1 77 4 4 78 4 2 33 1 1 81 3 1 82 3 1 11 4 2 77 4 4 4 1 77 4 4 7										
57 4 1 3 4 58 3 2 3 1 59 1 1 3 2 60 4 3 1 1 61 1 3 2 4 61 1 3 2 148 1 4 4 3 61 1 3 3 2 1 1 61 1 3 2 3 1 4 4 63 3 4 3 1 1 4 4 63 3 4 3 1 1 4 4 66 2 1 1 1 1 4 4 155 3 2 2 3 3 66 2 1 1 1 1 4 4 156 2 2 2 3 3 66 2 1 1 1 1 4 3 70 3 2 2 2 2 1 71 2 2 3 3 72 2 1 2 4 3 4 74 3 4 1 3 3 75 1 1 4 2 1 3 77 4 4 1 3 3 78 4 2 2 3 3 77 2 1 1 3 1 <										
58 3 2 3 1 59 1 1 3 2 60 4 3 1 1 61 1 3 3 2 62 1 2 1 2 63 3 4 3 1 64 1 3 2 3 65 3 4 2 4 1 1 3 2 66 2 1 1 67 4 2 4 1 1 1 67 4 2 4 1 1 1 66 2 1 1 1 1 1 67 4 2 4 1 3 2 68 2 4 3 2 2 3 4 70 3 2 2 2 2 3 1 71 2 2 3 73 4 1 3 75 1 1 4 76 2 1 2 1 4 4 76 2 1 2 2 3 3 76 2 1 2 77 4 4 1 78 4 2 3 1 1 81 3 1 1 82 3 1 1 83										
591132 60 4311 60 4311 61 1332 62 1212 64 1323 65 3424 66 2111 152 3144 66 2111 66 2111 66 2111 66 2111 66 2111 70 3222 70 3222 71 223 71 223 71 223 71 223 71 223 72 121 71 221 72 121 77 441 78 423 79 211 81 31 82 311 81 31 82 311 83 412 84 14 85 44 85 44 85 44 85 44 85 4										
61133262121263343641323424653424116621111167424156222432703227032271223734137434175112774417842379211801223418131482311841384138624186241862418714288113894241772141663431772141833117634317721418624117634317744 </td <td></td>										
61133262121263343641323424653424116621111167424156222432703227032271223734137434175112774417842379211801223418131482311841384138624186241862418714288113894241772141663431772141833117634317721418624117634317744 </td <td></td>										
63343164132365342466211167424167424168243270322271223734137341374341751127621277441801227921180122823118413478442792118231184134774418341384134774411134166122223334113411341134211341341341311312 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
64 1 3 2 3 65 3 4 2 4 66 2 1 1 1 67 4 2 4 1 67 4 2 4 1 68 2 4 3 2 70 3 2 2 2 71 2 2 3 1 72 2 1 2 4 73 4 1 3 3 75 1 1 4 2 76 2 1 2 1 76 2 1 2 1 76 2 1 3 3 77 4 4 1 3 78 4 2 3 3 79 2 1 1 3 166 1 2 4 1 82 3 1 1 2 3 84										
653424662111674241674241682432692341703222712231722124734133743413751124762121774413784233784233784223792113801223823112834138413417131277344784237921181311823118413417244237142166234171312384134175343862418714<										
662111 67 4241 68 2432 68 2432 69 2341 70 3222 71 2231 72 2124 73 413 73 413 74 341 76 212 1 21 76 212 76 212 1 23 76 212 1 22 76 213 78 423 4 23 78 42 3 11 80 12 2 33 66 24 4 1 85 44 4 1 86 24 87 14 88 11 89 42 4 2 4 2 4 2 4 2 4 1 3 4 1 3 1 3 1 3 1 3 1 2 3 4 3 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>										
67 4 2 4 1 68 2 4 3 2 69 2 3 4 1 70 3 2 2 2 70 3 2 2 2 71 2 2 3 1 72 2 1 2 4 3 73 4 1 3 3 74 3 4 1 3 75 1 1 4 2 76 2 1 2 1 77 4 4 1 3 78 4 2 3 3 79 2 1 1 3 80 1 2 2 3 81 3 1 1 2 83 4 1 3 4 171 3 1 2 3 185 4 4 2 3 1										
68 2 4 3 2 69 2 3 4 1 70 3 2 2 2 71 2 2 3 1 71 2 2 3 1 71 2 2 3 1 72 2 1 2 4 73 4 1 3 3 73 4 1 3 3 75 1 1 4 2 164 4 2 1 3 76 2 1 2 1 76 2 1 3 1 77 4 4 1 3 78 4 2 3 3 79 2 1 1 3 80 1 2 2 3 81 3 1 1 2 84 1 4 2 3 85 4										
6923417032227122317221247341337434137511427621217744137842337921138012238131128413448413486241871428811389424179313188113188113188113189424179313179313179313179313										
70 3 2 2 2 71 2 2 3 1 72 2 1 2 4 73 4 1 3 3 74 3 4 1 3 75 1 1 4 2 76 2 1 2 1 77 4 4 1 3 78 4 2 3 3 78 4 2 3 3 78 4 2 3 3 79 2 1 1 3 80 1 2 2 3 79 2 1 1 1 81 3 1 1 2 82 3 1 1 2 3 171 3 1 2 3 182 3 1 1 2 3 88 4 4 2 3 1 </td <td></td>										
7122317221247341337341337434137434137511421623447621217621217744137842337921138012238131418231128544486241871418811389424179313231										
72 2 1 2 4 73 4 1 3 3 74 3 4 1 3 74 3 4 1 3 75 1 1 4 2 76 2 1 2 1 77 4 4 1 3 78 4 2 3 3 79 2 1 1 3 80 1 2 2 3 81 3 1 4 1 82 3 1 1 2 84 1 4 1 1 83 4 1 3 4 4 171 3 1 2 3 84 1 4 2 3 1 85 4 4 2 3 1 86 2 4 1 3 2 176 3 4 3 </td <td></td>										
74 3 4 1 3 75 1 1 4 2 76 2 1 2 1 76 2 1 2 1 77 4 4 1 3 78 4 2 3 3 79 2 1 1 3 80 1 2 2 3 81 3 1 4 1 82 3 1 1 2 83 4 1 3 4 1 84 1 4 2 3 85 4 4 4 2 3 86 2 4 1 3 1 87 1 4 1 3 1 88 1 1 3 1 1 3 89 4 2 4 1 1 3 179 3 1 3 2 1			1							1
75 1 1 4 2 76 2 1 2 1 76 2 1 2 1 77 4 4 1 3 78 4 2 3 3 79 2 1 1 3 80 1 2 2 3 80 1 2 2 3 81 3 1 4 1 82 3 1 1 2 83 4 1 3 4 1 3 84 1 4 2 2 3 85 4 4 4 2 3 86 2 4 1 3 1 87 1 4 1 3 1 88 1 1 3 1 3 1 3 2 177 2 1 4 1 3 2 89 4										
76 2 1 2 1 77 4 4 1 3 78 4 2 3 3 78 4 2 3 3 79 2 1 1 3 80 1 2 2 3 81 3 1 4 1 82 3 1 1 2 83 4 1 3 4 171 3 1 2 3 88 1 4 2 2 87 1 4 2 3 88 1 1 3 4 171 3 4 3 4 171 3 1 2 3 172 4 4 4 1 173 4 4 2 3 174 4 1 3 4 175 3 4 3 2 176										
77 4 4 1 3 78 4 2 3 3 78 4 2 3 3 79 2 1 1 3 80 1 2 2 3 80 1 2 2 3 81 3 1 4 1 81 3 1 4 1 82 3 1 2 3 83 4 1 3 4 1 83 4 1 3 4 1 84 1 4 2 2 85 4 4 4 2 3 86 2 4 1 3 4 175 3 4 3 2 87 1 4 1 3 2 88 1 1 3 1 3 2 176 3 4 1 3 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
78 4 2 3 3 79 2 1 1 3 80 1 2 2 3 80 1 2 2 3 81 3 1 4 1 82 3 1 1 2 3 83 4 1 3 4 1 171 3 1 2 3 83 4 1 2 3 84 1 4 2 3 85 4 4 4 2 3 86 2 4 1 3 4 171 3 4 3 4 88 1 1 3 1 89 4 2 4 2 3 172 4 4 1 3 4 173 4 4 3 1 175 3 4 3 2 177 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
79 2 1 1 3 80 1 2 2 3 81 3 1 4 1 82 3 1 4 1 82 3 1 1 2 3 84 1 3 4 1 3 1 85 4 4 2 3 1 3 4 86 2 4 1 3 1 3 4 87 1 4 1 3 1 3 2 88 1 1 3 1 3 2 3 89 4 2 4 1 3 4 3 1 175 3 4 3 2 1 1 3 2 177 2 1 4 1 3 3 1 186 1 1 3 1 3 2 1 189 4 2										
80 1 2 2 3 81 3 1 4 1 82 3 1 1 2 83 4 1 2 3 84 1 4 2 2 85 4 4 2 3 86 2 4 1 3 4 173 4 4 2 3 174 4 1 3 4 175 3 4 3 1 176 3 4 3 2 176 3 4 3 2 177 2 1 4 1 177 2 1 4 1 178 4 1 1 3 178 4 1 1 3 179 3 1 3 2										
81 3 1 4 1 82 3 1 1 2 83 4 1 3 4 83 4 1 3 4 83 4 1 3 4 84 1 4 2 2 85 4 4 4 2 3 86 2 4 1 3 4 86 2 4 1 3 2 87 1 4 1 3 2 88 1 1 3 1 3 2 176 3 4 1 3 2 177 2 1 4 1 88 1 1 3 1 3 2 178 4 1 1 3 2 179 3 1 3 2										
82 3 1 1 2 83 4 1 3 4 83 4 1 3 4 84 1 4 2 2 85 4 4 4 2 3 86 2 4 1 3 4 173 4 4 2 3 86 2 4 1 2 87 1 4 1 3 1 788 1 1 3 1 178 4 1 3 2 89 4 2 4 2 3 1 3 2										
83 4 1 3 4 84 1 4 2 2 85 4 4 2 2 85 4 4 4 2 86 2 4 1 3 4 87 1 4 1 3 2 88 1 1 3 1 176 3 4 3 2 177 2 1 4 1 3 1 3 1 88 1 1 3 1 178 4 1 1 3 89 4 2 4 2 179 3 1 3 2										
84 1 4 2 2 85 4 4 4 2 86 2 4 1 2 86 2 4 1 2 87 1 4 1 3 4 88 1 1 3 1 89 4 2 4 2 176 3 4 3 2 177 2 1 4 1 13 1 3 1 3 2										
85 4 4 4 2 86 2 4 1 2 87 1 4 1 3 88 1 1 3 1 89 4 2 4 3 1 1 3 1 3 1 3 2 177 2 1 4 1 3 10 3 1 3 1 3 2 178 4 1 1 3 2										
87 1 4 1 3 177 2 1 4 1 88 1 1 3 1 178 4 1 1 3 89 4 2 4 2 179 3 1 3 2								4		1
88 1 1 3 1 178 4 1 1 3 89 4 2 4 2 179 3 1 3 2	86				2				3	
<u>89</u> 4 2 4 2 <u>179</u> 3 1 3 2										
90 4 3 4 3 180 1 4 1 1										
	90	4	3	4	3	180	1	4	1	1

SRIGAYATRI EDUCATIONAL INSTITUTIONS

