

IMPORTANTINSTRUCTIONS

1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/ black ball point pen only.
2. The test is of $\mathbf{3}$ hours duration and this Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get $\mathbf{4}$ marks. For ewach incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
3. Use Blue/ Black Ball Point Pen only for writing particulars on this page/marking response
4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
5. On completion of the test, the candidate must hand over the Answer sheet to the Invigilator before leaving the Room/ Hall. The candidates are allowed to take away this Test Booklet with them.
6. The CODE for this Booklet is WW. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll. No. anywhere else except in the specified space in the Test Booklet / Answer sheet.
8. Use of white fluid for correction is not permissible on the Answer Sheet.

PHYSICS

1. The efficiency of an ideal heat engine working between the freezing point and boiling point of water is
1) 26.8%
2) 6.25%
3) 20%
4) 12.5%

Key : 1
Solution : $\eta=1-\frac{T_{2}}{T_{1}}$

$$
\begin{aligned}
& =1-\frac{273}{373} \\
& =1-0.7319 \\
& =0.268 \times 100 \\
& =26.8 \%
\end{aligned}
$$

2. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere?
(Given : Mass of oxygen molecule (m) $=2.76 \times 10^{-26} \mathrm{~kg}$
Boltzmann's constant $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$)
1) $2.508 \times 10^{4} \mathrm{~K}$
2) $5.016 \times 10^{4} \mathrm{~K}$
3) $8.360 \times 10^{4} \mathrm{~K}$
4) $1.254 \times 10^{4} \mathrm{~K}$

Key : $\mathbf{3}$
Solution : $\mathrm{V}_{\mathrm{e}}=\sqrt{\frac{3 \mathrm{~K}_{\mathrm{B}} \mathrm{T}}{\mathrm{m}}}$
$\left(11.2 \times 10^{3}\right)^{2}=\frac{3 \times 1.38 \times 10^{-23} \times \mathrm{T}}{2.76 \times 10^{-26}}$
$\mathrm{T}=\frac{112 \times 112 \times 10^{-2} \times 10^{6} \times 2 \times 10^{-3}}{3}$
$=8.360 \times 10^{4} \mathrm{~K}$
3. The fundamental frequency in an open organ pipe is equal to the third harmonie of a closed organ pipe. If the length of the closed organ pipe is 20 cm , the length of the open organ pipe is

1) 13.2 cm
2) 12.5 cm
3) 8 cm
4) 16 cm

Key : 1
Solution : $\mathrm{n}_{0}=3 \mathrm{n}_{\mathrm{c}}$
$\frac{\mathrm{V}}{2 \ell_{0}}=\frac{3 \mathrm{~V}}{4 \ell_{\mathrm{c}}}$
$\ell_{0}=\frac{2 \ell_{\mathrm{c}}}{3}=\frac{2 \times 20}{3}=\frac{40}{3}=13.2 \mathrm{~cm}$
4. The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

1) $\frac{2}{5}$
2) $\frac{1}{3}$
3) $\frac{2}{3}$
4) $\frac{2}{7}$

Key : 1

Solution: $\frac{\mathrm{dw}}{\mathrm{dq}}=\frac{\mathrm{pdv}}{\mathrm{nc}_{\mathrm{p}} \mathrm{dT}}=\frac{\mathrm{nRdT}}{\mathrm{nc}_{\mathrm{p}} \mathrm{dT}}=\frac{\mathrm{R}}{\mathrm{cp}}$
$=\frac{\mathrm{R}}{\frac{\gamma \mathrm{R}}{\gamma-1}}=\frac{\gamma-1}{\gamma}=\frac{\frac{5}{3}-1}{\frac{5}{3}}$
$=\frac{\frac{2}{3}}{\frac{5}{3}}=\frac{2}{5}$
5. A battery consists of a variable number ' n ' of identical cells (having internal resistance ' r ' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n ?
1)

2)

3)

4)

Key : 1
Solution : $\mathrm{I}=\frac{\mathrm{nE}}{\mathrm{nr}}=\frac{\mathrm{E}}{\mathrm{r}}$ (n is Independent of current)
6. A carbon resistor of $(47 \pm 4.7) \mathrm{k} \Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be

1) Violet - Yellow - Orange - Silver
2) Yellow - Green - Violet - Gold
3) Yellow - Green - Orange - Silver
4) Green - Orange - Violet - Gold

Key : 3
Solution : Use colour code of resistance
7. A set of ' n ' equal resistors, of value ' R ' each, are connected in series to a battery of emf ' E ' and internal resistance ' R '. The current drawn is I. Now, the ' n ' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I . The value of ' n ' is

1) 10
2) 20
3) 11
4) 9

Key : 1
Solution : $I=\frac{E}{n R+R}=\frac{E}{(n+1) R}$
$10 I=\frac{E}{\frac{R}{n}+R}=\frac{E}{\left(\frac{1+n}{n}\right) R}$
$10 \frac{E}{(n+1) R}=\frac{n e}{(1+n) R}$
$\mathrm{n}=10$
8. Current sensitivity of a moving coil galvanometer $5 \mathrm{div} / \mathrm{mA}$ and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} / \mathrm{V}$. The resistance of the galvanometer is

1) 40Ω
2) 250Ω
3) 25Ω
4) 500Ω

Key : $\mathbf{2}$
Solution: $\frac{\theta}{\mathrm{V}}=\frac{\theta}{\mathrm{IG}}$
$\mathrm{G}=\frac{5 \times 10^{3}}{20}$
$\mathrm{G}=\frac{1000}{4}=250 \Omega$
9. A metallic rod of mass per unit length $0.5 \mathrm{~kg} \mathrm{~m}^{-1}$ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is

1) 7.14 A
2) 14.76 A
3) 5.98 A
4) 11.32 A

Key : 4
Solution: $\mathrm{F}_{\mathrm{g}}=\mathrm{F}_{\mathrm{B}}$
$m g \sin \theta=\mathrm{i} \ell \mathrm{B} \cos \theta$
$\frac{\mathrm{m}}{\ell} \frac{\mathrm{g}}{\mathrm{B}} \frac{\sin \theta}{\cos \theta}=\mathrm{i}$
$\frac{0.5 \times 9.8}{1.732} \times \frac{1}{\sqrt{3}}=\mathrm{i}$
$\frac{50}{25} \times \frac{9.8}{1.732}=$ i
$\mathrm{I}=11.32 \mathrm{~A}$
10. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from

1) The current source
2) The lattice structure of the material of the rod
3) The magnetic field
4) The induced electric field due to the changing magnetic field

Key : 1
Solution : Conceptual
11. An inductor 20 mH , a capacitor $100 \mu \mathrm{~F}$ and a resistor 50Ω are connected in series across a source of emf, $V=10 \sin 314 \mathrm{t}$. The power loss in the circuit is

1) 0.79 W
2) 2.74 W
3) 0.43 W
4) 1.13 W

Key: 1
Solution : $\mathrm{I}_{0}=\frac{\mathrm{E}_{0}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}\left(\because \mathrm{R}=50 \Omega \mathrm{X}_{\mathrm{L}}=6.28 \Omega, \mathrm{X}_{\mathrm{C}}=31.84 \Omega\right)$
$=\frac{10}{\sqrt{2500+(6.28-31.84)^{2}}}$
$=\frac{10}{56.2}$
$\mathrm{P}=\mathrm{I}_{\mathrm{rms}} \mathrm{V}_{\mathrm{rms}} \operatorname{Cos} \phi \quad(\because \phi=0)$
$=\frac{I_{0}}{\sqrt{2}} \cdot \frac{E_{0}}{\sqrt{2}}$
$=0.79$ watt
12. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm . If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be

1) 30 cm away from the mirror
2) 30 cm towards the mirror
3) 36 cm away from the mirror
4) 36 cm towards the mirror

Key : 3
Solution: $\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}+\frac{1}{4}$
$\frac{1}{\mathrm{v}_{1}}=-\frac{1}{7}+\frac{1}{4}$
$\frac{1}{\mathrm{v}_{1}}=\frac{1}{4}-\frac{1}{7}$
$\frac{1}{\mathrm{v}_{1}}=\frac{1}{40}-\frac{1}{15}$
$\frac{1}{\mathrm{v}_{1}}=\frac{15-40}{40 \times 15}$
$\mathrm{v}_{1}=\frac{-40 \times 15}{25}$
$\mathrm{v}_{1}=-24$
$\frac{1}{\mathrm{v}_{2}}=\frac{1}{4}-\frac{1}{\mathrm{f}}$
$\frac{1}{\mathrm{v}_{2}}=\frac{1}{20}-\frac{1}{15}$
$=\frac{15-20}{20 \times 15}$
$=\frac{-5}{20 \times 15}$
$\mathrm{v}_{2}=-60 \mathrm{~cm}$
Displaced $=60-24$
$=36 \mathrm{~cm}$ a way the mirror
13. An em wave is propagating in a medium with a velocity $\overrightarrow{\mathrm{V}}=\mathrm{V} \hat{\mathrm{i}}$. The instantaneous oscillationg electric field of this em wave is along $+\mathbf{y}$ axis. Then the direction of oscillating magnetic field of the em wave will be along

1) $-z$ direction
2) - y direction
3) $+z$ direction
4) - x direction

Key: 3
Solution: $\hat{\mathbf{j}} \times \hat{\mathrm{k}}=\hat{\mathrm{i}}$
14. The magnetic potential energy stored in a certain inductor is 25 mJ , when the current in the inductor is $\mathbf{6 0 ~ m A}$. This inductor is of inductance

1) 0.138 H
2) 1.389 H
3) 138.88 H
4) 13.89 H

Key : 4
Solution : $\mathrm{U}=\frac{1}{2} \mathrm{LI}^{2}$
$25 \times 10^{-3}=\frac{1}{2} \times\left(60 \times 10^{-3}\right)^{2}$
$\frac{50 \times 10^{-3}}{3600 \times 10^{-6}}=\mathrm{L}$
$\frac{5}{36} \times 10^{2}=\mathrm{L}$
$\mathrm{L}=\frac{500}{36}=13.89 \mathrm{H}$
15. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is

1) 60°
2) 30°
3) 45°
4) Zero

Key: $\mathbf{3}$
Solution : $\mu_{1} \sin \mathrm{i}=\mu_{2} \sin r$
$r_{1}+r_{2}=A$
$\mathrm{r}_{1}=30$
$\mathrm{i}=\sqrt{2} \frac{1}{2}$
$\mathrm{i}=\frac{1}{\sqrt{2}}$
$\mathrm{i}=45^{\circ}$
16. In the circuit shown in the figure, the input voltage V_{i} is $20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$ and $\mathrm{V}_{\mathrm{CE}}=0$. The values of I_{B}, I_{C} and β are given by

1) $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \beta=250$
2) $\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \beta=250$
3) $I_{B}=25 \mu \mathrm{~A}, I_{C}=5 \mathrm{~mA}, \beta=200$
4) $I_{B}=40 \mu \mathrm{~A}, I_{C}=5 \mathrm{~mA}, \beta=125$

Key: 4
Solution : $v_{i}-I_{B} R_{B}-V_{B E}=0$
$v_{i}=I_{B} R_{B}$
$\mathrm{I}_{\mathrm{B}}=\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{B}}}=\frac{20}{500 \times 10^{3}}$
$\mathrm{I}_{\mathrm{B}}=\frac{2}{5} \times 10^{-4}$
$=0.4 \times 10^{-4}$
$\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{c}}}{\mathrm{R}_{\mathrm{C}}}=\frac{20}{4 \times 10^{3}}$
$\mathrm{I}_{\mathrm{C}}=5 \mu \mathrm{~A}$
$\beta=\frac{\mathrm{IC}}{\mathrm{I}_{\mathrm{B}}}=\frac{5 \times 10^{-3}}{40 \times 10^{-6}}$
$\beta=\frac{1000}{8}=125$
17. In a p-n junction diode, change in temperature due to heating

1) Affects only reverse resistance
2) Does not affect resistance of p-n junction
3) Affects only forward resistance
4) Affects the overall V-I characteristics of p-n junction

Key: 4
Solution : As temperature \uparrow
Resistance \downarrow
18. In the combination of the following gates the output Y can be written in terms of inputs A and B as

1) $\overline{A . B}$
2) $\overline{A \cdot B}+A \cdot B$
3) $A \cdot \bar{B}+\bar{A} \cdot B$
4) $\overline{A+B}$

Key: 3
Solution : Conceptual
19. Unpolarised light is incident from air on a plane surface of a material of refractive index ' μ '. At a particular angle of incidence ' i ', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation?

1) Reflected light is polarized with its electric vector parallel to the plane of incidence
2) $i=\sin ^{-1}\left(\frac{1}{\mu}\right)$
3) Reflected light is polarized with its electric vector perpendicular to the plane of incidence
4) $i=\tan ^{-1}\left(\frac{1}{\mu}\right)$

Key: 3
Solution : Conceptual
20. In Young's double slit experiment the separation d between the slits is $\mathbf{2} \mathbf{~ m m}$, the wavelength λ of the light used is 5896 A and distance D between the screen and slits is $\mathbf{1 0 0} \mathbf{~ c m}$. It is found that the angular width of fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to

1) 1.8 mm
2) 2.1 mm
3) 1.9 mm
4) 1.7 mm

Key : 3
Solution : $\theta=\frac{\lambda}{d}$
$\theta \propto \frac{1}{d}$
$\frac{\theta_{1}}{\theta_{2}}=\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}$
$\frac{0.20}{0.21}=\frac{\mathrm{d}_{2}}{2}$
$\mathrm{d}_{2}=1.9 \mathrm{~mm}$
21. An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of

1) Small focal length and large diameter
2) Large focal length and large diameter
3) Large focal length and small diameter
4) Small focal length and small diameter

Key: 2

Solution : Angular resolution $=\frac{1.22 \lambda}{\mathrm{~d}}$
As d is less, angular resolution is high
22. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of $27^{\circ} \mathrm{C}$ two successive resonances are produced of $27^{\circ} \mathrm{C}$ two successive resonances are produced at $\mathbf{2 0} \mathbf{~ c m}$ and 73 cm of column length. If the frequency of the tuning fork is 320 Hz , the velocity of sound in air at $27^{0} \mathrm{C}$ is

1) $330 \mathrm{~m} / \mathrm{s}$
2) $350 \mathrm{~m} / \mathrm{s}$
3) $339 \mathrm{~m} / \mathrm{s}$
4) $300 \mathrm{~m} / \mathrm{s}$

Key : 3
Solution: $\mathrm{v}=2 \mathrm{n}\left(\ell_{3}-\ell_{1}\right)$
$v=2 \times 320 \times(73-20) \times 10^{-2}$
$\mathrm{v}=640 \times 53 \times 10^{-2}$
$\mathrm{v}=339 \mathrm{~m} / \mathrm{s}$
23. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is $20 \mathbf{~ m s}^{-2}$ at a distance of 5 m from the mean position. The time period of oscillation is

1) $2 \pi \mathrm{~s}$
2) 2 s
3) $\pi \mathrm{s}$
4) 1 s

Key : $\mathbf{3}$
Solution : $a=w^{2} x$
$20=w^{2} \times 5$
$4=w^{2}$
$\mathrm{w}=2$
$\frac{2 \pi}{\mathrm{~T}}=2$
$\mathrm{T}=\pi$
24. The electrostatic force between the metal plates of an isolated parallel plate capacitor \mathbf{C} having a charge Q and area A, is

1) Independent of the distance between the plates
2) Proportional to the square root of the distance between the plates
3) Linearly proportional to the distance between the plates.
4) Inversely proportional to the distance between the plates.

Key : 1
Solution : $F=\frac{Q^{2}}{2 \epsilon_{0} A}$ When Q, A are constant
F is independent of distance between the plates
25. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall the proton is

1) smaller
2) 10 times greater
3) 5 times greater
4) equal

Key : 1
Solution : $\mathrm{t}_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{hm}_{\mathrm{e}}}{\mathrm{Eq}}}$
$\mathrm{t}_{\mathrm{p}}=\sqrt{\frac{2 \mathrm{hm}_{\mathrm{p}}}{\mathrm{Eq}}}$
As $\mathrm{m}_{\mathrm{p}}>\mathrm{m}_{\mathrm{e}}$
$\mathrm{t}_{\mathrm{p}}>\mathrm{t}_{\mathrm{e}} \quad \therefore \mathrm{t}_{\mathrm{e}}<\mathrm{t}_{\mathrm{P}}$
26. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are K_{A}, K_{B} and K_{C}, respectively. $A C$ is the major axis and $S B$ is perpendicular to $A C$ at the position of the Sun S as shown in the figure Then.

1) $K_{A}<K_{B}<K_{C}$
2) $\mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{C}}$
3) $K_{C}>K_{B}>K_{C}$
4) $K_{B}>K_{A}>K_{C}$

Key: 3
Solution:
SA $<\mathrm{SB}<\mathrm{SC}$
$\mathrm{V}_{\mathrm{A}}>\mathrm{V}_{\mathrm{B}}>\mathrm{V}_{\mathrm{C}}$
$\mathrm{KE}_{\mathrm{A}}>\mathrm{KE}_{\mathrm{B}}>\mathrm{KE}_{\mathrm{C}}$
27. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy $\left(K_{t}\right)$ as well as rotational kinetic energy $\left(K_{t}\right)$ simultaneously. The ratio $K_{t}:\left(K_{t}+K_{r}\right)$ for the sphere is

1) $7: 10$
2) $10: 7$
3) $5: 7$
4) $2: 5$

Key: 3
Solution : $\frac{\mathrm{k}_{\text {tra }}}{\mathrm{k}_{\text {Tot }}}=\frac{1}{2} \mathrm{mv}^{2}$
$\frac{\mathrm{k}_{\text {tra }}}{\mathrm{k}_{\text {Tot }}}=\frac{1}{2} \mathrm{mv}^{2}[1+\beta]$
$\frac{\mathrm{k}_{\text {ta }}}{\mathrm{k}_{\text {Tot }}}=\frac{1}{1+\beta}=\frac{1}{1+\frac{2}{5}}$
$\frac{\mathrm{k}_{\text {ta }}}{\mathrm{k}_{\text {Tot }}}=\frac{5}{7}$
28. A solid sphere is rotating freely about its symmetry axis is free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?

1) Angular velocity
2) Rotational kinetic energy
3) Moment of inertia
4) Angular momentum

Key : 4
Solution : L = Constant
29. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct?

1) Raindrops will fall faster
2) Time period of simple pendulum on the Earth would decrease.
3) Walking on the ground would become more difficult
4) ' g ' on the Earth will not change.

Key: 4
Solution : Conceptual
30. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field \vec{E}. Due to the force $q \vec{E}$, its velocity increases from 0 to $6 \mathrm{~m} / \mathrm{s}$ in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively

1) $2 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}$
2) $1 \mathrm{~m} / \mathrm{s}, 3.5 \mathrm{~m} / \mathrm{s}$
3) $1 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$
4) $1.5 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$

Key : 3

Solution : Eq = ma
$a=\frac{E q}{m}$
$=6$
$\mathrm{u}=6$
$\mathrm{v}=\mathrm{u}+\mathrm{at}$
$0=6-6 \mathrm{t}$
$6 t=6$
$\mathrm{t}=1$
Average velocity $\frac{\mathrm{s}}{\mathrm{t}}=1 \mathrm{~m} / \mathrm{s}$
Distance $=15 \mathrm{~m}$
Average speed $=15 / 5=3 \mathrm{~m} / \mathrm{s}$
31. A block of mass m is placed on a smooth inclined wedge $A B C$ of inclination θ as shown in the figure. The wedge is given an acceleration ' a ' towards. The wedge is given an acceleration ' a ' towards the right. The relation between a and θ for the block to remain stationary on the wedge is

1) $a=\frac{g}{\operatorname{cosec} \theta}$
2) $a=g \cos \theta$
3) $\mathrm{a}=\frac{\mathrm{g}}{\sin \theta}$
4) $a=g \tan \theta$

Key : 4
Solution : Stationary on the block
$\mathrm{a} \cos \theta=\mathrm{g} \sin \theta$
$\mathrm{a}=\frac{\mathrm{g} \sin \theta}{\cos \theta}$
$\mathrm{a}=\mathrm{g} \tan \theta$
32. The moment of the force, $\overrightarrow{\mathrm{F}}=4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}$ at $(\mathbf{2}, 0,-\mathbf{3})$, about point (2,-2,-2), is given by

1) $-8 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-7 \hat{\mathrm{k}}$
2) $-7 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
3) $-4 \hat{\mathbf{i}}-\hat{\mathbf{j}}-8 \hat{\mathrm{k}}$
4) $-7 \hat{i}-4 \hat{j}-8 \hat{k}$

Key: 4
Solution: $\overline{\mathrm{r}}=(2-2) \hat{\mathrm{i}}+(0+2) \hat{\mathrm{j}}+(-3+2) \hat{\mathrm{k}}$

$$
\begin{aligned}
& =2 \hat{\mathrm{j}}-\hat{\mathrm{k}} \\
& \bar{\tau}=\overline{\mathrm{r}} \times \overline{\mathrm{F}} \\
& =\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
0 & 2 & -1 \\
4 & 5 & -6
\end{array}\right| \\
& =\hat{\mathrm{i}}(-12+5)-\hat{\mathrm{j}}(4)+\hat{\mathrm{k}}(-8) \\
& =-7 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-8 \hat{\mathrm{k}}
\end{aligned}
$$

33. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm . The main scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of $\mathbf{- 0 . 0 0 4} \mathbf{~ c m}$, the correct diameter of the ball is
1) 0.521 cm
2) 0.053 cm
3) 0.525 cm
4) 0.529 cm

Key : 4

Solution: $\mathrm{d}=\mathrm{a}+\mathrm{L} . \mathrm{c} \times$ no of divisions
$\mathrm{d}=5 \times 10^{-3}+0.001 \times 25+0.004$
$\mathrm{d}=0.5+0.025+0.004$
$\mathrm{d}=0.529 \mathrm{~cm}$
34. Which one of the following statement is incorrect ?

1) Rolling friction is smaller than sliding friction
2) Frictional force opposes the relative motion.
3) Limiting value to normal reaction
4) Coefficient of sliding friction has dimensions of length.

Key : 4
Solution : Conceptual
35. Three objects, A : (a solid sphere), B: (a thin circular disk) and C: (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axis. The amounts of work (W) required to bring them to rest, would satisfy the relation

1) $\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}$
2) $\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}$
3) $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{C}}$
4) $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}$

Key: $\mathbf{1}$
Solution: W $=\frac{1}{2} \mathrm{I} \omega^{2}$
W α I
$\mathrm{I}_{\text {solid }}<\mathrm{I}_{\text {disc }}<\mathrm{I}_{\text {riy }}$
$\frac{2}{5} \mathrm{MR}^{2}<\frac{\mathrm{MR}^{2}}{2}<\mathrm{MR}^{2}$
$\mathrm{W}_{\mathrm{A}}<\mathrm{W}_{\mathrm{B}}<\mathrm{W}_{\mathrm{C}}$
$\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}$
36. A moving block having mass m, collides with another stationary block having mass 4 m .The lighter block comes to rest after collision. When the initial velocity of the lighter block is \mathbf{v}, then the value of coefficient of restitution (e) will be

1) 0.5
2) 0.8
3) 0.25
4) 0.4

Key : $\mathbf{3}$
Solution: $\mathrm{V}_{2}=\frac{(1+\mathrm{e}) \mathrm{m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{U}_{1}$
$V_{2}=\frac{(1+e) m}{5 m} v$
$\mathrm{v}_{2}=\frac{1+\mathrm{e}}{5} \mathrm{v}$
$\mathrm{e}=\frac{\mathrm{v}_{2}}{\mathrm{u}_{1}}$
$v_{2}=e v$
$\mathrm{ev}=\left(\frac{1+\mathrm{e}}{5}\right) \mathrm{v}$
$5 \mathrm{e}=1+\mathrm{e}$
$4 \mathrm{e}=1$
$\mathrm{e}=\frac{1}{4}=0.25$
37. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter $A B=D$. The height h is equal to

1) $3 / 2 \mathrm{D}$
2) $7 / 5 \mathrm{D}$
3) D
4) $5 / 4 \mathrm{D}$

Key: 4
Solution : $\frac{1}{2} \mathrm{mv}^{2}=\mathrm{mgh}$
$\mathrm{v}=\sqrt{5 \mathrm{gR}}$
$\frac{5 \mathrm{gR}}{2}=\mathrm{g}$
$\frac{5 \mathrm{D}}{4}=4$
38. Two wires are made of the same material and have the same volume. The first wire has cross

- Sectional area A and the second wire has cross -sectional area 3 A . If the length of the first wire is increased by $\Delta \ell$ on applying a force F, how much force is needed to stretch the second wire by the same amount?

1) 9 F
2) 4 F
3) 6 F
4) F

Key: $\mathbf{1}$
Solution: $\mathrm{Y}=\frac{\mathrm{F} \ell}{\mathrm{Ae}}$
$\mathrm{F}=\frac{\mathrm{YAeA}}{\ell . \mathrm{A}}=\frac{\mathrm{YA}^{2} \mathrm{e}^{2}}{\mathrm{~V}}$
$\frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\left(\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}\right) \frac{\mathrm{e}_{1}}{\mathrm{e}_{2}} \Rightarrow \frac{\mathrm{~F}_{1}}{\mathrm{~F}_{2}}=\left(\frac{\mathrm{A}}{3 \mathrm{~A}}\right)^{2}=\frac{1}{9}$
$\mathrm{F}_{2}=9 \mathrm{~F}_{1}$
39. A sample of $0.1 \mathbf{g}$ of water at $100^{\mathbf{0}} \mathbf{C}$ and normal pressure $\left(1.013 \times 10^{5} \mathrm{Nm}^{-2}\right)$ requires $\mathbf{5 4}$ cal of heat energy to convert to steam at $100^{\circ} \mathrm{C}$. If the volume of the steam produced is 167.1 cc , the change in internal energy of the sample, is

1) 104.3 J
2) 42.2 J
3) 208.7 J
4) 84.5 J

Key: 3
Solution : $\Delta U=\Delta Q-p d v$
$=\mathrm{mL}-\mathrm{Pdv}$
$=\left(10^{-4}\right) 540 \times 4200-11.013 \times 10^{5}(167) \times 10^{-6}$
$=208.7 \mathrm{~J}$
40. The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_{0}.If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4} \lambda_{0}$, The power radiated by it becomes $\mathbf{n P}$. The value of \mathbf{n} is

1) $3 / 4$
2) $256 / 81$
3) $4 / 3$
4) $81 / 256$

Key : $\mathbf{2}$
Solution : $\mathrm{P} \alpha \frac{1}{\lambda^{4}}$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{4}$
$\frac{\mathrm{p}}{\mathrm{np}}=\left(\frac{3}{4} \times \frac{\lambda_{0}}{\lambda_{0}}\right)^{4}$
$\frac{1}{\mathrm{n}}=\frac{81}{256}$
$\mathrm{n}=\frac{256}{81}$
41. A small sphere of radius ' r ' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to

1) r^{3}
2) r^{5}
3) r^{2}
4) r^{4}

Key : 2
Solution : W $=\mathrm{Fs}$
$=(6 \pi n r v) v t$
$w \alpha v^{2} r$
$w \alpha\left(\mathrm{r}^{2}\right)^{2} \mathrm{r}$
War ${ }^{5}$
42. An electron of mass m with an initial velocity $\vec{V}=V_{0} \hat{i}\left(V_{0}-0\right)$ enters an electric field $\overrightarrow{\mathrm{E}}=-\mathrm{E}_{0} \hat{\mathrm{i}}\left(\mathrm{E}_{0}=\right.$ constant $\left.>0\right)$ at $\mathbf{t}=\mathbf{0}$. If λ_{0} is its de-Broglie wavelength initially, then its deBroglie wavelength at time t is

1) $\left.\frac{\lambda_{0}}{\left(1+\frac{\mathrm{eE}_{0}}{\mathrm{mV}} \mathrm{t}\right.} \mathrm{t}\right)$
2) $\lambda_{0}\left(1+\frac{\mathrm{eE}_{0}}{\mathrm{mV}_{0}} \mathrm{t}\right)$
3) λ_{0}

Key: 1
Solution: $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$
$\mathrm{V}=\mathrm{V}_{0} \uparrow$
$\mathrm{V}=\mathrm{V}_{0}+\frac{\mathrm{Ee}}{\mathrm{m}} \mathrm{t}$
$\lambda_{0}=\frac{\mathrm{h}}{\mathrm{mv}_{0}}$

$$
\lambda^{1}=\frac{h}{m\left(v_{0}+\frac{\mathrm{Ee}}{\mathrm{~m}} \mathrm{t}\right)}
$$

$$
=\frac{\mathrm{h}}{\operatorname{mv}_{0}\left[1+\frac{\mathrm{Ee}}{\mathrm{mv}_{0}} \mathrm{t}\right]}
$$

$\left.\lambda^{1}=\frac{\lambda_{0}}{\left[1+\frac{\mathrm{eE}_{0}}{\mathrm{mv}_{0}} \mathrm{t}\right.}\right]$
43. For a radioactive material, half-life is $\mathbf{1 0}$ minutes. If initially there are $\mathbf{6 0 0}$ number of nuclei, the time taken (in minutes) for the disintegration of $\mathbf{4 5 0}$ nuclei is

1) 20
2) 30
3) 10
4) 15

Key : 1
Solution : $\mathrm{T}=10 \mathrm{~min}$

$$
\mathrm{t}=\mathrm{nT}
$$

$\mathrm{N}=\mathrm{N}_{\mathrm{O}}\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{\mathrm{T}}}$
$150=600\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{10}}$
$\frac{150}{600}=\left(\frac{1}{2}\right)^{\frac{\mathrm{t}}{10}}$
$\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{\frac{t}{10}}$
$2=\frac{\mathrm{t}}{10}$
$\mathrm{t}=20 \mathrm{sec}$
44. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is

1) $1: 1$
2) $2:-1$
3) $1:-1$
4) $1:-2$

Key : $\mathbf{3}$
Solution : $\frac{\mathrm{KE}}{\mathrm{TE}}=\frac{+13.6 \frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}}}{-13.6 \frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}}}=1:-1$
45. When the light of frequency $2 v_{0}$, (where v_{0} is threshold frequency), is incident on metal plate, the maximum velocity of electrons emitted from the same plate is v_{1}. When the frequency of the incident radiation is increased to $5 v_{0}$, the maximum electrons emitted from the same plate is v_{2}. The ratio of v_{1} to v_{2} is

1) $1: 2$
2) $4: 1$
3) $1: 4$
4) $2: 1$

Key : 1
Solution : $\mathrm{E}=\mathrm{w}_{0}+\mathrm{KE}_{\text {max }}$

$$
\begin{aligned}
& \mathrm{hv}=h v_{0}+\frac{1}{2} \mathrm{mv}_{\max }^{2} \\
& \mathrm{~h}\left(2 v_{0}\right)=h v_{0}+\frac{1}{2} m v_{1}^{2} \\
& \mathrm{~h}\left(5 v_{0}\right)=h v_{0}+\frac{1}{2} m v_{2}^{2} \\
& \frac{1}{2} \mathrm{mv} v_{1}^{2}=2 h v_{0}-h v_{0}=h v_{0} \\
& \frac{1}{2} m v_{2}^{2}=4 h v_{0} \\
& \frac{\mathrm{~V}_{1}^{2}}{\mathrm{~V}_{2}^{2}}=\frac{h v_{0}}{4 h v_{0}}=\frac{1}{4} \\
& \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{1}{2}
\end{aligned}
$$

CHEMISTRY

46. Which of the following oxide is most acidic in nature?
1) MgO
2) BaO
3) BeO
4) CaO

Key : 3
Solution : BeO
47. The difference between amylose and amylopectin is

1) Amylopectin have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6 \alpha$ - linkage
2) Amylopectin have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6 \beta$-linkage
3) Amylose have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6 \beta$ - linkage
4) Amylose is made up of glucose and galactose

Key: 1
Solution: Conceptual
48. A mixture of $\mathbf{2 : 3} \mathbf{g}$ formic acid and $4.5 \mathbf{g}$ oxalic acid is treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be

1) 1.4
2) 2.8
3) 3.0
4) 4.4

Key : 2
Solution :

49. Regarding cross-linked or network polymers, which of the following statements is incorrect?

1) They contain covalent bonds between various linear polymer chains.
2) Examples are Bakelite and melamine
3) They are formed from bi-and tri-functional monomers.
4) They contain strong covalent bonds in their polymer chains.

Key : 4
Solution : Conceptual
50. Nitration of aniline in strong acidic medium also gives m-nitroaniline because

1) In spite of substituents nitro group always goes to only m-position.
2) In absence of substituents nitro group always goes to m-position.
3) In electrophilic substitution reactions amino group is meta directive.
4) In acidic (strong) medium aniline is present as anilinium ion.

Key : 4
Solution : Conceptual
51. The compound A on treatment with $N a$ gives B, and with $P C l_{5}$ gives C. B and C react to gether to give diethyl ether. \mathbf{A}, B and \mathbf{C} are in the order

1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$

Key: 4
Solution :

52. Hydrocarbon (A) reacts with bromine by substitution to torm an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms.(A) is

1) $\mathrm{CH} \equiv \mathrm{CH}$
2) $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
3) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
4) CH_{4}

Key : 4
Solution : Conceptual
53. The compound $\mathrm{C}_{7} \mathrm{H}_{8}$ undergoes the following reactions:
$\mathrm{C}_{7} \mathrm{H}_{8} \xrightarrow{3 \mathrm{Cl}_{2} / \Delta} A \xrightarrow{\mathrm{Br}_{2} / \mathrm{Fe}} B \xrightarrow{\mathrm{Zn} / \mathrm{HCl}} C$ The product ' C ' is

1) m - bromotoluene
2) 3-bromo- 2,4,6- trichlorotoluene
3) o-bromotoluene
4) p-bromotoluene

Key : 1
Solution :

54. Which oxide of mitrogen is not a common pollutant introduced inte the atmosphere both due to natural and human activity?

1) $\mathrm{N}_{2} \mathrm{O}_{5}$
2) $\mathrm{N}_{2} \mathrm{O}$
3) NO_{2}
4) NO

Key : 1
Solution : Conceptual
55. The bond dissociation energies of $\mathbf{X}_{2}, \mathbf{Y}_{2}$ and $X Y$ are in the ratio of $\mathbf{1 :} \mathbf{0 . 5 : 1} \Delta H$ for the formation of $X Y$ is $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will be

1) $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2) $800 \mathrm{~kJ} \mathrm{~mole}^{-1}$
3) $100 \mathrm{~kJ} \mathrm{~mole}^{-1}$
4) $400 \mathrm{~kJ} \mathrm{~mole}^{-1}$

Key: 2
Solution : $\Delta H=B . E_{R}-B_{P} E_{P}$
56. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
1) is halved
$2)$ is tripled
3) is doubled
4) remains unchanged

Key : 3
Solution : $t_{1 / 2}=\frac{a}{2 k}$
57. The correction factor ' a ' to the ideal gas equation corresponds to

1) density of the gas molecules
2)electric field present between the gas molecules
2) volume of the gas molecules
3) forces of attraction between the gas molecules

Key: 4
Solution : Conceptual
58. For the redox reaction $\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ the correct coefficients of the reactants for the balanced equation are

	MnO_{4}^{-}	$\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
1) 16	5	H^{+}
2) 2	16	2
3) 2	5	5
4) 5	16	16

Key : 3

Solution : Conceptual
59. Which one of the following conditions will favour maximum formation of the product in the reaction $A_{2}(g)+B_{2}(g)$ 明 $X_{2}(g) \Delta_{r} H=-X k J$?

1) Low temperature and high pressure
2) High temperature and high pressure
3) Low temperature and low pressure
4) High temperature and low pressure

Key:
Solution : Conceptual
60. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below:

Then the species undergoing disproportionation is

1) BrO_{3}^{-}
2) BrO_{2}
3) BrO_{4}^{-}
4) HBrO

Key : 4
Solution : $\left(\Delta \mathrm{G}^{0}=-\mathrm{nFE}^{0}\right.$ cell $)$ more E^{0} cell , more favourable conditions for the reactions
61. Among $\mathrm{CaH}_{2}, \mathrm{BeH}_{2}, \mathrm{BaH}_{2}$, the order of ionic character is

1) $\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}$
2) $\mathrm{BeH}_{2}<\mathrm{BaH}_{2}<\mathrm{CaH}_{2}$
3) $\mathrm{CaH}_{2}<\mathrm{BeH}_{2}<\mathrm{BaH}_{2}$
4) $\mathrm{BaH}_{2}<\mathrm{BeH}_{2}<\mathrm{CaH}_{2}$

Key : 1
Solution : Conceptual
62. In which case in the number of molecules of water maximum?

1) 18 mL of water
2) 0.00224 L of water vapours at 1 atm and 273 k
3) 0.18 g of water
4) $10^{-3} \mathrm{mo}$ of water

Key : 1
Solution : Conceptual
63. The correct difference between first and second- order reactions is that

1) The rate of a first- order reaction does not depend on reactant concentrations; the rate of a second- order reaction does depend on reactant concentrations
2) A first- order reaction can be catalyzed; a second- order reaction cannot be catalyzed
3) The half-life of a first-order reaction does not depend on $[A]_{0}$; the half-life of a second-order reaction does depend on $[A]_{0}$
4) The rate of a first-order reaction does depend on reactant concentrations; the rate of a secondorder reaction does not depend on reactant concentrations.
Key : 3
Solution : $\mathrm{t}_{1 / 2} \alpha \frac{1}{a^{\mathrm{n}-1}}$
64. Which of the following is correct with respect to $-I$ effect of the substituents? ($\mathrm{R}=$ alkyl)
1) $-\mathrm{NH}_{2}<-\mathrm{OR}<-F$
2) $-\mathrm{NH}_{2}>-\mathrm{OR}>-F$
3) $-N R_{2}<-O R<-F$
4) $-N R_{2}>-O R>-F$

Key : 1
Solution : Conceptual
65. Which of the following molecules represents the order of hybridization $\mathbf{s p}^{2}, \mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}$ from left to right atoms?

1) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
2) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
3) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
4) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}$

Key : 3
Solution : Conceptual
66. Which of the following carbocations is expected to be most stable?
1)

2)

3)

4)

Key : 2
Solution: Conceptual
67. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1 s^{\mathbf{2}}, \mathbf{2 s ^ { 2 }}, \mathbf{2} \mathbf{p}^{\mathbf{3}}$, the simplest formula for this compound is

1) $M g_{2} X_{3}$
2) $M g_{2} X$
3) MgX_{2}
4) $M g_{3} X_{2}$

Key: 4
Solution : Conceptual
68. Iron exhibits bcc structure at room temperature. Above $900^{\circ} \mathrm{C}$, it transforms to fcc structure. The ratio of density of iron at room temperature to that at $900^{\circ} \mathrm{C}$ (assuming molar mass and atomic radii of iron remains constant with temperature) is

1) $\frac{\sqrt{3}}{\sqrt{2}}$
2) $\frac{3 \sqrt{3}}{4 \sqrt{2}}$
3) $\frac{4 \sqrt{3}}{3 \sqrt{2}}$
4) $\frac{1}{2}$

Key : 2
Solution: $\frac{\mathrm{d}_{1}}{\mathrm{~d}_{2}}=\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}} \times \frac{\left(\mathrm{a}_{2}\right)^{3}}{\left(\mathrm{a}_{1}\right)^{3}}$
69. Which one is a wrong statement?

1) Total orbital angular momentum of electron in ' s ' orbital is equal to zero
2) The electronic configuration of N atom is

3) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
4) The value of m for $d_{z^{2}}$ is zero.

Key : 2
Solution : Conceptual
70. Consider the following species :
$\mathrm{CN}^{+}, \mathrm{CN}^{-}, \mathrm{NO}$ and CN
Which one of these will have the highest bond order?

1) NO
2) $C N^{+}$
3) CN^{-}
4) CN

Key : 3
Solution : Conceptual
71. Which of the following statements is not true for halogens?

1) All form monobasic oxyacids
2) All but fluorine show positive oxidation states
3) All are oxidizing agents
4) Chlorine has the highest electron- gain enthalpy

Key : 2
Solution : Conceptual
72. Considering Ellingham diagram, which of the following metals can be used to reduce alumina?

1) Fe
2) Mg
3) Zn
4) Cu

Key : 2
Solution : Conceptual
73. The correct order of atomic radii in group 13 elements is

1) $B<A l<$ In $<G a<T l$
2) $B<G a<A l<T l<$ In
3) $B<A l<G a<$ In $<T l$
4) $B<G a<A l<$ In $<T l$

Key: 4
Solution : Conceptual
74. In the structure of ClF_{3}, the number of lone pairs of electrons on central atom ' Cl ' is

1) One
2) Four
3) Two
4) Three

Key : 3
Solution : Conceptual
75. The correct order of \mathbf{N}-compounds in its decreasing order of oxidation states is

1) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
2) $\mathrm{NHO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
3) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
4) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}, \mathrm{NO}, \mathrm{HNO}_{3}$

Key : 1
Solution : Conceptual
76. Which one of the following elements is unable to from $M F_{6}^{3-}$ ion?

1) Ga
2) B
3) Al
4) In

Key : 2
Solution : Conceptual
77. In the reaction

the electrophile involved is

1) dichloromethyl cation $\left(\stackrel{\oplus}{\mathrm{C}} \mathrm{HCl}_{2}\right)$
2) dichloromethyl anion $\left(\stackrel{\oplus}{\mathrm{C}} \mathrm{HCl}_{2}\right)$
3) formyl cation $(\stackrel{\oplus}{C} H O)$
4) dichlorocarbene (: CCl_{2})

Key : 4
Solution: Conceptual
78. Carboxylic acids have higher boiling points than aldehydes, ketone and even alcohols of comparable molecular mass. It is due to heir

1) Formation of intramolecular H -bonding
2) More extensive association of carboxylic acid via van der Waals force of attraction
3) Formation of carboxylate ion
4) Formation of intermolecular H-bonding.

Key: 4
Solution : Conceptual
79. Compound $\mathrm{A}, \mathrm{C}_{8} H_{10} \mathrm{O}$, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell. A and Y are respectively.
1)

2)

3)

4)

Key: 2
Solution : Conceptual
80. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code:
Column I
Column II
A) CO^{3+}
I) $\sqrt{8}$ В. M.
B) Cr^{3+}
II) $\sqrt{35}$ B. M.
C) $F e^{3+}$
III) $\sqrt{3}$ B. M.
D) Ni^{2+}
IV) $\sqrt{24}$ B. M
V) $\sqrt{15}$ В. M.

	A	B	C	D		A	B	C	D
1)	IV	V	II	I	2)	IV	I	II	III
3)	I	II	III	IV	$4)$	III	V	I	II

Key : 1
Solution : $\sqrt{\mathrm{n}(\mathrm{n}+2)}$ B.M
81. Iron carbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$ is

1) tetranuclear
2) trinuclear
3) mononuclear
4) dinuclear

Key : 3
Solution : Conceptual
82. The geometry and magnetic behavior of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are

1) square planar geometry and diamagnetic
2) square planar geometry and paramagnetic
3) tetrahedral geometry and paramagnetic
4) tetrahedral geometry and paramagnetic

Key : 3
Solution : Conceptual
83. Which one of the following ions exhibits d-d transition and paramagnetism as well ?

1) CrO_{4}^{2-}
2) MnO_{4}^{-}
3) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
4) MnO_{4}^{2-}

Key: 4
Solution : Conceptual
84. The type of isomerism shown by the complex $\left[\mathrm{COCl}_{2}(\mathrm{en})_{2}\right]$ is

1) Geometrical isomerism
2) Ionization isomerism
3) Coordination isomerism
4) Linkage isomerism

Key : 1
Solution: Conceptual
85. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations.

1) $60 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+40 \mathrm{~mL} \frac{\mathrm{~m}}{10} \mathrm{NaOH}$
2) $55 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{\mathrm{~m}}{10} \mathrm{NaOH}$
3) $75 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{HCl}+25 \mathrm{~mL} \frac{\mathrm{~m}}{5} \mathrm{NaOH}$
4) $100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+100 \mathrm{~mL} \frac{\mathrm{~m}}{10} \mathrm{NaOH}$

Key : 4
Solution : Conceptual
86. On which of the following properties does not coagulating power of an ion depend?

1) The magnitude of the charge on the ion alone
2) Both magnitude and sign of the charge on the ion
3) Size of the ion alone
4) The sign of charge on the ion alone

Key : 2
Solution : Conceptual
87. The solubility of BaSO_{4} in water is $2.42 \times 10^{-3} \mathrm{gL}^{-1}$ at 298 K . The value of its solubility product $\left(K_{s p}\right)$ will be (Given molar mass of $\mathrm{BaSO}_{4}=233 \mathrm{~g} \mathrm{~mol}^{-1}$)

1) $1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
2) $1.08 \times 10^{-14} \mathrm{~mol}^{2} L^{-2}$
3) $1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
4) $1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$

Key : 1
Solution : Conceptual
88. Given van der Waals constant for $\mathrm{NH}_{3}, \mathrm{H}_{2}, \mathrm{O}_{2}$ and CO_{2}, which one of the following gases is most easily liquefied?

1) NH_{3}
2) O_{2}
3) H_{2}
4) CO_{2}

Key : 1
Solution: Conceptual
89. Which of the following compounds can form a zwitterion?

1) Aniline
2) Benzoic acid
3) Acetanilide
4) Glycine

Key: 4
Solution: Conceptual
90. Identify the major products P, Q and R in the following sequence of reactions

1)

$$
\mathrm{P} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+} / \Delta]{\text { (i) } \mathrm{O}_{2}} \mathrm{Q}+\mathrm{R}
$$

3)

2)

Key : 4
Solution: Conceptual

BIOLOGY

91. What type of ecological pyramid would be obtained with the following data?

Secondary consumer: $\mathbf{1 2 0 g}$
Primary consumer: 60 kg
Primary producer: 10 kg

1) Inverted pyramid of biomass
2) Upright pyramid of numbers
3) Pyramid of energy
4) Upright pyramid of biomass

Key: 1
Solution : Conceptual
92. Natality refers to

1) Death rate
2) Number of individuals leaving the habitat
3) Birth rate
4) Number of individuals entering a habitat

Key : 3
Solution: Conceptual
93. World Ozone Day is celebrated on

1) $5^{\text {th }}$ June
2) $16^{\text {th }}$ September
3) $21^{\text {st }}$ April
4) $22^{\text {nd }}$ April

Key : 2
Solution : Conceptual
94. In stratosphere, which of the following elements acts as a catalyst in degradation of ozone and release of molecular oxygen?

1) Carbon
2) Fe
3)CI
3) Oxygen

Key : $\mathbf{3}$
Solution : Conceptual
95. Niche is

1) All the biological factors in the organism's environment
2) The range of temperature that the organism needs to live
3) The physical space where an organism lives
4) The functional role played by the organism where it lives

Key : 4
Solution : Conceptual
96. Which of the following is a secondary pollutant?

1) CO
2) SO_{2}
3) CO_{2}
4) O_{3}

Key : 4
Solution : Conceptual
97. What is the role of $N A D^{+}$in cellular respiration?

1) It functions as an enzyme
2) It is nucleotide source for ATP synthesis
3) It functions as an electron carrier
4) It is the final electron acceptor for anaerobic respiration

Key : $\mathbf{3}$
Solution : Conceptual
98. Oxygen is not produced during photosynthesis by

1) Green sulphur bacteria
2) Cycas
3) Nostoc
4) Chara

Key: 1
Solution : Conceptual
99. Which one of the following plants shows a very close relationship with a species on month, where none of the two can complete its life cycle without the other?

1) Hydrilla
2) Banana
3) Yисса
4) Viola

Key : $\mathbf{3}$
Solution : Conceptual
100. In which of the following forms is iron absorbed by plants?

1) Ferric
2) Free element
3) Ferrous
4) Both ferric and ferrous

Key: 1
Solution : Conceptual
101. Which of the following element is responsible for maintaining turgor in cells?

1) Magnesium
2) Potassium
3) Sodium
4) Calcium

Key : $\mathbf{2}$
Solution : Conceptual
102. Double fertilization is

1) Fusion of two male gametes of a pollen tube with two different eggs
2) Fusion of two male gametes with one egg
3) Fusion of one male gamete with two polar nuclei
4) Syngamy and triple fusion

Key: 4
Solution : Conceptual
103. Pollen grains can be stored for several years in liquid nitrogen having a temperature of

1) $-120^{\circ} \mathrm{C}$
2) $-196^{\circ} \mathrm{C}$
3) $-80^{\circ} \mathrm{C}$
4) $-160^{\circ} \mathrm{C}$

Key: 2
Solution : Conceptual
104. The stage during which separation of the paired homologous chromosomes begins is

1) Pachytene
2) Diakinesis
3) Diplotene
4) Zygotene

Key : 3
Solution : Conceptual
105. Which of the following is true for nucleolus?

1) Larger nucleoli are present in dividing cells
2) It takes part in spindle formation
3) It is a membrane- bound structure
4) It is a site for active ribosomal RNA synthesis

Key : 4
Solution : Conceptual
106. Which among the following is not a prokaryote?

1) Saccharomyces
2) Nostoc
3) Mycobacterium
4) Oscillatoria

Key: 1
Solution : Conceptual
107. Stomatal movement is not affected by

1) Temperature
2) O_{2} concentration
3) Light
4) CO_{2} concentration

Key : $\mathbf{2}$
Solution : Conceptual
108. Stomata in grass leaf are

1) Dumb- bell shaped
2) Rectangular
3) Kidney shaped
4) Barrel shaped

Key: 1
Solution : Conceptual
109. The two functional groups characteristic of sugas are

1) Hydroxyl and methyl
2) Carbonyl and phosphate
3) Carbonyl and methyl
4) Carbonyl and hydroxyl

Key : 4
Solution : Conceptual
110. The Golgi complex participates in

1) Fatty acid breakdown
2) Respiration in bacteria
3) Formation of secretory vesicles
4) Activationof amino aicd

Key : 3
Solution : Conceptual
111. Which of the following is not a product of light reaction of photosynthesis?

1) ATP
2) NADPH
3) NADH
4) Oxygen

Key:3
Solution : Conceptual
112. Offsets are produced by
1)Meiotic divisions
2) Parthenocarpy
3) Mitotic divisions
4) Parthenogenesis

Key: 3
Solution : Conceptual
113. Select the correct statement:

1) Franklin Stahl coined the term" linkage"
2) Spliceosomes take part in translation
3) Punnett square was developed by a British scientist
4) Transduction was discovered by S.Altman

Key : 3
Solution : Conceptual
114. Which of the following has proved helpful in preserving pollen as fossils?

1) Pollenkitt
2) Oil content
3) Cellulosic intine
4) Sporopollenin

Key : 4
Solution : Conceptual
115. Select the Correct match:

1) Alec Jeffreys

- Streptococcus pneumoniae

2) Matthew Meselson And F. Stahl

- Pisum sativum

3) Alfred Hershey and Martha Chase

- TMV

4) Francois Jacob and Jacques Monod

- Lac operon

Key : 4
Solution : Conceptual
116. The experimental proof for semiconservative replication of DNA was first shown in a

1) Fungus
2) Plant
3) Bacterium
4) Virus

Key: 3
Solution : Conceptual
117. Which of the following flowers only once in its life- time?

1) Bamboo species
2) Mango
3) Jackfruit
4) Papaya

Key $: \mathbf{1}$
Solution : Conceptual
118. Which of the following pairs is wrongly matched?
1)Starch synthesis in pea - Multiple alleles
2) XO type sex determination - Grasshopper
3) ABO blood grouping - Co- dominance
4) T.H. Morgan - Linkage

Key: 1
Solution : Conceptual
119. Winged pollen grains are present in

1) Mustard
2) Mango
3) Cycas
4) Pinus

Key : 4
Solution : Conceptual
120. After karyogamy followed by meiosis, spores are produced exogenously in

1) Neurospora
2) Agaricus
3) Alternaria
4) Saccharomyces

Key : $\mathbf{2}$
Solution : Conceptual
121. Which one is wrongly matched?

1) Uniflagellate gametes - Polysiphonia
2) Gemma cups - Marchantia
3) Biflagellate zoospores - Brown algae
4) Unicellular organism - Chlorella

Key : 1
Solution : Conceptual
122. Match the items given in Column I with those in Column II and select the correct option given below:
Column -I
a. Herbarium
b. Key
c. Museum
d. Catalogue

d. Catalogue		iv. A			
				helpfu	
	a	b	c	d	
1.		i	iv	iii	ii
2.	ii	iv	iii	i	
3.	iii	ii	i	iv	
2.	iii	iv	i	ii	

Key : 4
Solution : Conceptual
123. Secondary xylem and phloem in dicot stem are produced by

1) Apical meristems
2) Phellogen
3) Vascular cambium
4) Axillary meristems

Key : 3
Solution : Conceptual
124. Pneumatophores occur in

1) Halophytes
2) Carnivorous plants
3) Free- floating hydrophytes
4) Submerged hydrophytes

Key : 1
Solution: Conceptual
125. Sweet potato is a modified
1)Stem
2) Tap root
3) Adventitious root
4) Rhizome

Key : $\mathbf{3}$
Solution : Conceptual
126. Which of the following statements is correct?

1) Ovules are not enclosed by ovary wall in gymnosperms
2) Horsetails are gymnosperms
3) Selaginella is heterosporous, while Salvinia is homosporous.
4) Stems are usually unbranched in both Cycas and Cedrus

Key: 1
Solution : Conceptual
127. Select the wrong statement :

1) Cell wall is present in members of Fungi and Plantae.
2) Pseudopodia are locomotory and feeding structures in Sporozoans.
3) Mushrooms belong to Basidiomycetes
4) Mitochondria are the powerhouse of the cell in all kingdoms except Monera

Key : 2
Solution : Conceptual
128. Casparian strips occur in

1) Epidermis
2) Cortex
3) Pericycle
4) Endodermis

Key: 4
Solution : Conceptual
129. Plants having little or no secondary growth are

1) Grasses
2) Conifers
3) Deciduous angiosperms
4) Cycads

Key : 1
Solution: Conceptual
130. A' new' variety of rice was patented by a foreign company, though such varieties have been present in India for a long time. This is related to

1) $\mathrm{Co}-667$
2) Lerma Rojo
3) Sharbati Sonora
4) Basmati

Key: 4
Solution : Conceptual
131. Which of the following is commonly used as a vector for introducing a DNA fragment in human lymphocytes?

1) Retrovirus
2) λ phage
3) Ti plasmid
4) pBR 322

Key : 1
Solution : Conceptual
132. In India, the organization responsible for assessing the safety of introducing genetically modified organisms for public use is

1) Indian Council of Medical Research (ICMR)
2) Research Committee on Genetic Manipulation (RCGM)
3) Council for Scientific and Industrial Research (CSIR)
4) Genetic Engineering Appraisal Committee (GEAC)

Key : 4
Solution : Conceptual
133. Select the correct match:

1) Ribozyme - Nucleic acid
2) T.H. Morgan - Transduction
3) $F_{2} \times$ Recessive parent - Dihybrid cross
4) G. Mendel - Transformation

Key: 1
Solution : Conceptual
134. The correct order of steps in Polymerase Chain Reaction (PCR) is

1) Extension, Denaturation, Annealing
2) Denaturation, Extension, Annealing
3) Annealing, extension, Denaturation
4) Denaturation, Annealing, Extension

Key: 4
Solution : Conceptual
135. Use of bioresources by multinational companies and organization without authorization from the concerned country and its people is called

1) Bio- infringement
2) Biodegradation
3) Biopiracy
4) Bioexploitation

Key:3
Solution : Conceptual
136. The transparent lens in the human eye is held in its place by

1) ligaments attached to the ciliary body
2) smooth muscles attached to the iris
3) ligaments attached to the iris
4) smooth muscles attached to the ciliary body

Key : 1
Solution : Conceptual
137. Which of the following hormones can play a significant role in osteoporosis?

1) Aldosterone and Prolactin
2) Estrogen and Parathyroid hormone
3) Progesterone and Aldosterone
4) Parathyroid hormone and Prolactin

Key:2
Solution : Conceptual
138. Which of the following structures or region is incorrect paired with its functions?

1) Medulla oblongata: Controls respiration and cardiovascular reflexes
2) Hypothalamus: Production of releasing hormones and regulation of temperature, hunger and thirst
3) Limbic system : Consists of fibre tracts that interconnect different regions of brain; controls movement
4) Corpus callosum: Band of fibers connecting left and right cerebral hemispheres

Key : 3
Solution : Conceptual
139. Which of the following is an amino acid derived hormone?

1) Epinephrine
2) Estradiol
3) Ecdysone
4) Estriol

Key: 1
Solution : Conceptual
140. All of the following are part of and operon except

1) an operator
2) an enhancer
3) structural genes
3) a promoter

Key : 2
Solution : Conceptual
141. AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding sequence of the transcribed mRNA?

1) AGGUAUCGCAU
2) ACCUAUGCGAU
3) UGGTUTCGCAT
4) UCCAUAGCGUA

Key : 1
Solution : Conceptual
142. Match the items given in Column I with those in Column II and select the correct option given below
Column I Column II
a. Proliferative Phase
i. Breakdown of endometrial lining
b. Secretory Phase
ii. Follicular Phase
c. Menstruation
iii. Luteal Phase

	a	b	c
1$)$	iii	ii	i
2$)$	ii	iii	i
3$)$	i	iii	ii
4$)$	iii	i	ii

Key : $\mathbf{2}$
Solution : Conceptual
143. According to Hugo de Vries, the mechanism of evolution is

1) Multiple step mutation
2) Phenotype variations
3) Saltation
4) Minor mutaions

Key : 3
Solution: Conceptual
144. A woman has an X - linked condition on one of her X chromosomes. This chromosome can be inherited by

1) Only daughters
2) Only grandchildren
3) Only sons
4) Both sons and daughters

Key: 4
Solution : Conceptual
145. In which disease does mosquito transmitted pathogen cause chronic inflammation of lymphatic vessels?

1) Elephantiasis
2) Ringworm disease
3) Ascariasis
4) Amoebiasis

Key : 1
Solution : Conceptual
146. Among the following sets of examples for divergent evolution, select the incorrect option:

1) Forelimbs of man, bat and cheetah
2) Brain of bat, man and cheetah
3) Heart of bat, man and cheetah
4) Eye of octopus, bat and man

Key : 4
Solution : Conceptual
147. Which of the following is not an autoimmune disease?

1) Psoriasis
2) Alzheimer's disease
3) Rheumatoid arthritis
4) Vitiligo

Key: 2
Solution : Conceptual
148. The similarity of bone structure in the forelimbs of many vertebrates is an example of

1) Homology
2) Convergent evolution
3) Analogy
4) Adaptive radiation

Key : 1
Solution : Conceptual
149. Conversion of milk to curd improves its nutritional value by increasing the amount of

1) Vitamin D
2) Vitamin B_{12}
3) Vitamin A
4) Vitamin E

Key: 2
Solution : Conceptual
150. Which of the following characteristic represent 'Inheritance of blood groups' in humans?
a) Dominance
b) $\mathbf{C o}$ - dominance
c) Multiple allele
d) Polygenic inheritance

1) b, c and e
2) b, d and c
3) a, b and c
4) a, c and e

Key : 3
Solution : Conceptual
151. Which one of the following population interactions is widely in medical science for the production of antibiotics?

1) Commensalism
2) Parasitism
3) Mutualism
4) Amensalism

Key : 4
Solution : Amensalism, association between organism of two different species in which one is inhibited or destroyed and the other is unaffected.
152. All of the following are included in ' $\mathbf{E x}$ - situ conservation' except

1) Wildlife safari parks
2) Botanical gardens
3) Sacred groves
4) Seed banks

Key : 3
Solution : Conceptual
153. Match the items given in Column I with those in Column II and select the correct option given below

Column I
a. Eutrophication
b. Sanitary landfill
c. Snow blindness
d. Jhum cultivation

Column II

i. UV - B radiation
ii. Deforestation
iii. Nutrient enrichment
iv. Waste disposal

	a	b	c	d
1$)$	ii	i	iii	iv
2$)$	iii	iv	i	ii
3$)$	i	iii	iv	ii
4$)$	i	ii	iv	iii

Key : 2
Solution : Conceptual
154. In a growing population of a country,

1) pre - reproductive individuals are more than the reproductive individuals
2) reproductive and pre - reproductive individuals are equal in number.
3) reproductive individuals are less than the post - reproductive individuals
4) pre - reproductive individuals are less than the reproductive individuals

Key : 1
Solution :
155. Which part of poppy plant is used to obtain the drug 'Smack'?

1) Flowers
2) Roots
3) Latex
4) Leaves

Key : 3
Solution : Conceptual
156. Hormones secreted by the placenta to maintain pregnancy are

1) hCG, hPL, progestogens, prolactin
2) hCG, hPL, progestogens, estrogens
3) hCG, hPL, estrogens, relaxin, oxytocin
4) hCG, progestogents, estrogens, glucocorticoids

Key : $\mathbf{2}$
Solution : Conceptual
157. The contraceptive 'SAHELI'

1) blocks estrogen receptors in the uterus. Preventing eggs from getting implanted
2) is an IUD
3) increases the concentration of estrogen and prevent ovulation in females
4) is a post - coital contraceptive

Key : 1
Solution : SAHELI has unique combination of weak estrogenic and potent anti estrogenic properties. It does not disturb the endocrine system and the normal ovulatory cycle is maintained. It inhibits fertilized ovum from being implanted.
158. The amnion of mammalian embryo is derived from

1) ectoderm and mesoderm
2) mesoderm and trophoblast
3) endoderm and mesoderm
4) ectoderm and endoderm

Key : 1
Solution : Amnion is derived from somotopleure, which is derived from ectoderm and mesoderm
159. The difference between spermiogensis and spermiation is

1) In spermiogenesis spermatids are formed, while in spremiation spermatozoa are formed
2) In spermiogenesis spermatozoa from sertoli cells are released into the cavity of seminiferous tubules, while in spermiation spermatozoa are formed
3) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed
4) In spermiogenesis spermatozoa are formed, while in spermiation spermatozoa are released from sertoli cells into cavity of seminieferous tubules.
Key : 4
Solution : Conceptual
160. Which of the following options correctly represents the lunge conditions in asthma and emphysema, respectively?
1) Inflammation of bronchioles; Decreased respiratory surface
2) Increased respiratory surface; Inflammation of bronchioles
3) Increased number of bronchioles; Increased respiratory surface
4) Decreased respiratory surface; Inflammation of bronchioles

Key: 1
Solution : Conceptual
161. Match the items given Column I with those in Column II and select the correct option given below:
Column I

Column II

a. Tricuspid valve
i. Between left atrium and left ventricle
b. Bicuspid valve
ii. Between right ventricle and pulmonary artery
c. Semilunar valve
iii. Between right atrium and right ventricle

	a	b	c
1$)$	iii	i	ii
2$)$	i	ii	iii
3$)$	i	iii	ii
4$)$	ii	i	iii

Key : 1
Solution : Conceptual
162. Match the items given Column I with those in Column II and select the correct options given below:
Column I Column II
a. Tidal volume
i. $2500-3000 \mathrm{~mL}$
b. Inspiratory Reserve volume
ii. 1100 - $\mathbf{1 2 0 0} \mathbf{m L}$
c. Expiratory Reserve volume
iii. $500-550 \mathrm{~mL}$
d. Residual volume
iv. 1000 - $1100 \mathbf{m L}$

	a	b	c	d
1$)$	iii	ii	i	iv
2$)$	i	iv	ii	iii
3$)$	iii	i	iv	Ii
4$)$	iv	iii	ii	i

Key : $\mathbf{3}$
Solution : Conceptual
163. Match the items given in Column I with those in Column II and select the correct option given below:
Column I Column II
(Function)
a. Ultrafiltration
b. Concentration of urine
c. Transport of urine
(Part of Excretory System)
i. Henle's loop
d. Storage of urine
ii. Ureter
iii. Urinary bladder
iv. Malpighian corpuscle
v. Proximal convoluted tubule

	a	b	c	d
1$)$	iv	v	ii	iii
2$)$	v	iv	i	ii
3$)$	iv	i	ii	iii
4$)$	v	iv	i	iii

Key: 3
Solution : Conceptual
164. Match the items given in Column I with those in Column II and select the correct option given below:

Column I
a. Glycosuria
b. Gout
c. Renal calculi
d. Glomerular nephritis

Column II

i. Accumulation of uric acid in joints
ii. Mass of crystallised salt within the kidney
iii. Inflammation in glo meruli
iv. Presence of glucose in urine

	a	b	c	d
1$)$	iii	ii	iv	i
2$)$	ii	iii	i	iv
3$)$	i	ii	iii	iv
4$)$	iv	i	ii	iii

Key : 4
Solution : Conceptual
165. Which of the following is an occupational respiratory disorder?

1) Anthracis
2) Botulism
3) Silicosis
4) Emphysema

Key: $\mathbf{3}$
Solution : Conceptual
166. Calcium is important in skeletal muscle contraction because it

1) binds to troponin to remove the masking of active sites on actin for myosin
2) detaches the myosin head from the actin filament
3) activates the myosin ATP ase binding to it
4) prevents the formation of bonds between the myosin cross bridges the actin filament

Key : 1
Solution : Conceptual
167. Match the items given in Column I with those in Column II and select the correct option given below:

Column I
a. Fibrinogen
b. Globulin
c. Albumin

Column II
i. Osmotic balance
ii. Blood clotting
iii. Defence mechanism

	a	b	c
1$)$	iii	ii	i
2$)$	i	iii	ii
3$)$	i	ii	iii
4$)$	ii	iii	i

Key : 4
Solution : Conceptual
168. Which of the following gastric cells indirectly help in erythropoiesis?

1) Chief cells
2) Goblet cells
3) Mucous cells
4) Parietal cells

Key: 4
Solution : Parietal cells secrete castle's intrinsic factor which helps maturation of RBC
169. Which of these statements is incorrect?

1) Enzymes of TCA cycle are present in mitochondrial matrix
2) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
3) Glycolysis occurs in cytosol
4) Oxidative phosphorylation takes place in outer mitochondrial membrane

Key: 4
Solution : Conceptual
170. Many ribsomes may associate with a single mRNA to form multiple copies of a polypeptide simulataneouly. Such strings of ribosomes are termed as

1) Polysome
2) Plastidome
3) Polyhedral bodies
4) Nucleosome

Key : 1
Solution : Conceptual
171. Which of the following terms describe human dentition?

1) Thecodont, Diphyodont, Homodont
2) Pleurodont ,Monophyodont, Homodont
3)Thecodont, Diphyodont, Heterodont
3) Pleurodont, Diphyodont, Heterodont

Key : 3
Solution : Conceptual
172. Select the incorrect match:

1) Lampbrush- Diplotene bivalents
2) Submetacentric - L- shaped chromosomes
3) Allosomes - Sex chromosome
4) Polytene - Oocytes of amphibians

Key: 4
Solution : Conceptual
173. Nissl bodies are mainly composed of

1) Proteins and lipids
2) Nucleic acids and SER
3) DNA and RNA
4) Free ribosomes and RER

Key: 4
Solution : Conceptual
174. Which of the following events does not occur in rough endoplasmic reticulum

1) Protein folding
2) Cleavage of signal peptide
3) Protein glycosylation
4) Phospholipid synthesis

Key : 4
Solution : Conceptual
175. Which one of these animals is not a homeotherm?

1) Macropus
2) Camelus
3) Chelone
4) Psittacula

Key : 3
Solution : Conceptual
176. Which of the following features is used to identify a male cockroach from a female cockroach?

1) Presence of a boat shaped sternum on the $9^{\text {th }}$ abdominal segment
2) Forewings with darker tegmina
3) Presence of caudal styles
4) Presence of anal cerci

Key : 3
Solution : Conceptual
177. Identify the vertebrate group of animals characterized by crop and gizzard in its digestive system.

1) Amphibia
2) Aves
3) Reptilia
4) Osteichthyes

Key: 2
Solution : Conceptual
178. Ciliates differ from all other protozoans in

1) Using flagella for locomotion
2) Using pseudopodia for capturing prey
3) Having a contractile vacuole for removing excess water 4) Having two types of nuclei

Key: 4
Solution : Conceptual
179. Which of the following organisms are known as chief producers in the oceans?

1) Dinoflagellates
2) Cyanobacteria
3) Diatoms
4) Euglenoids

Key : 3
Solution : Conceptual
180. Which of the following animals does not undergo metamorphosis?

1) Earthworm
2) Moth
3) Tunicate
4) Starfish

Key: 1
Solution : Conceptual

NEET - 2018 KEY

Q.No.	CODE-W	CODE-X	CODE-Y	CODE-Z	Q.No.	CODE-W	CODE-X	CODE-Y	CODE-Z
1	1	3	3	2	91	1	1	3	2
2	3	4	1	1	92	3	2	1	2
3	1	1	3	2	93	2	4	3	1
4	1	2	2	1	94	3	3	1	1
5	1	4	2	4	95	4	4	4	3
6	3	1	4	1	96	4	1	1	4
7	1	1	1	1	97	3	4	1	4
8	2	3	3	3	98	1	2	3	1
9	4	4	3	2	99	3	3	3	3
10	1	1	1	1	100	1	2	1	2
11	1	2	4	1	101	2	1	3	4
12	3	2	4	2	102	4	4	1	2
13	3	2	4	4	103	2	3	1	3
14	4	1	1	2	104	3	2	2	1
15	3	4	2	2	105	4	4	3	2
16	4	3	4	2	106	1	1	4	1
17	4	1	4	2	107	2	4	2	2
18	3	1	3	3	108	1	4	3	3
19	3	3	1	1	109	4	2	1	3
20	3	3	3	2	110	3	4	3	1
21	2	4	1	1	111	3	2	1	3
22	3	1	1	1	112	3	1	3	3
23	3	2	4	2	113	3	4	3	3
24	1	3	1	3	114	4	2	3	2
25	1	2	3	3	115	4	1	1	1
26	3	4	4	3	116	3	1	3	2
27	3	4	4	2	117	1	2	3	2
28	4	2	3	3	118	1	1	1	1
29	4	2	1	2	119	4	1	2	3
30	3	1	2	4	120	2	4	2	2
31	4	1	1	2	121	1	1	1	1
32	4	2	4	1	122	4	3	4	3
33	4	1	1	4	123	3	4	4	4
34	4	2	3	2	124	1	2	1	2
35	1	1	4	1	125	3	2	1	3
36	3	1	3	1	126	1	4	4	1
37	4	4	3	1	127	2	4	4	4
38	1	3	1	3	128	4	2	4	3
39	3	2	1	1	129	1	1	1	1
40	2	3	3	3	130	4	3	4	1
41	2	3	2	2	131	1	2	4	3
42	1	1	4	3	132	4	1	3	2
43	1	4	2	2	133	1	3	1	4
44	3	2	4	3	134	4	2	4	1
45	1	3	3	3	135	3	1	4	2
46	3	2	4	3	136	1	2	1	1
47	1	2	4	1	137	2	4	3	3
48	2	4	4	1	138	3	2	3	4
49	4	2	4	4	139	1	2	4	4
50	4	2	1	4	140	2	1	1	4
51	4	4	3	4	141	1	2	3	2
52	4	3	1	3	142	2	2	2	1
53	1	2	2	2	143	3	3	4	3
54	1	3	1	1	144	4	4	2	4
55	2	3	1	3	145	1	1	2	2
56	3	4	4	4	146	4	1	4	3
57	4	1	3	4	147	2	2	3	3
58	3	2	3	1	148	1	4	4	3
59	1	1	3	2	149	2	4	1	1
60	4	3	1	1	150	3	3	2	1
61	1	3	3	2	151	4	1	4	2
62	1	2	1	2	152	3	1	4	4
63	3	4	3	1	153	2	4	3	1
64	1	3	2	3	154	1	4	3	3
65	3	4	2	4	155	3	2	1	3
66	2	1	1	1	156	2	2	2	4
67	4	2	4	1	157	1	2	3	3
68	2	4	3	2	158	1	4	4	3
69	2	3	4	1	159	4	3	4	2
70	3	2	2	2	160	1	3	2	1
71	2	2	3	1	161	1	2	4	2
72	2	1	2	4	162	3	4	4	3
73	4	1	3	3	163	3	4	4	4
74	3	4	1	3	164	4	2	1	3
75	1	1	4	2	165	3	2	1	4
76	2	1	2	1	166	1	2	4	2
77	4	4	1	3	167	4	4	3	4
78	4	2	3	3	168	4	2	2	2
79	2	1	1	3	169	4	4	1	1
80	1	2	2	3	170	1	1	4	1
81	3	1	4	1	171	3	1	2	3
82	3	1	1	2	172	4	4	4	1
83	4	1	3	4	173	4	4	2	3
84	1	4	2	2	174	4	1	3	4
85	4	4	4	2	175	3	4	3	1
86	2	4	1	2	176	3	4	3	2
87	1	4	1	3	177	2	1	4	1
88	1	1	3	1	178	4	1	1	3
89	4	2	4	2	179	3	1	3	2
90	4	3	4	3	180	1	4	1	1

