JEE MAIN 2021

PHYSICS

SECTION-A

1. Find the gravitational force of attraction between the ring and sphere as shown in the diagram, where the plane of the ring is perpendicular to the line joining the centres. If $\sqrt{8} \mathrm{R}$ is the distance between the centres of a ring (of mass ' m ') and a sphere (mass ' M ') where both have equal radius ' R '.

(1) $\frac{\sqrt{8}}{9} \cdot \frac{\mathrm{GmM}}{\mathrm{R}}$
(2) $\frac{2 \sqrt{2}}{3} \cdot \frac{\mathrm{GMm}}{\mathrm{R}^{2}}$
(3) $\frac{1}{3 \sqrt{8}} \cdot \frac{\text { GMm }}{\text { R}^{2}}$
(4) $\frac{\sqrt{8}}{27} \cdot \frac{\mathrm{GmM}}{\mathrm{R}^{2}}$

Official Ans. by NTA (4)
Sol. Gravitational field of ring

$$
=-\frac{\mathrm{Gmx}}{\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}
$$

Force between sphere \& ring
$=\frac{\operatorname{GmM}(\sqrt{8} R)}{\left(R^{2}+8 R^{2}\right)^{3 / 2}}$
$=\frac{\mathrm{GmM}}{\mathrm{R}^{2}} \times \frac{\sqrt{8}}{27}$
Ans. (4)
2. Consider the combination of 2 capacitors C_{1} and C_{2}, with $\mathrm{C}_{2}>\mathrm{C}_{1}$, when connected in parallel, the equivalent capacitance is $\frac{15}{4}$ time the equivalent capacitance of the same connected in series. Calculate the ratio of capacitors, $\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}$.
(1) $\frac{15}{11}$
(2) $\frac{111}{80}$
(3) $\frac{29}{15}$
(4) $\frac{15}{4}$

Official Ans. by NTA (2)
Allen Ans. (Bonus)
Sol. When connected in parallel
$\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}$
When in series
$\mathrm{C}^{\prime}{ }_{\mathrm{eq}}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
$\mathrm{C}_{1}+\mathrm{C}_{2}=\frac{15}{4}\left(\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}\right)$
$4\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)^{2}=15 \mathrm{C}_{1} \mathrm{C}_{2}$
$4 C_{1}^{2}+4 C_{2}^{2}-7 C_{1} C_{2}=0$
dividing by $\mathrm{C}_{1}{ }^{2}$
$4\left(\frac{C_{2}}{C_{1}}\right)^{2}-\frac{7 C_{2}}{C_{1}}+4=0$

Let $\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}=\mathrm{x}$
$4 x^{2}-7 x+4=0$
$b^{2}-4 a c=49-64<0$
No solution exits
Ans. (Bonus)
3. In a typical combustion engine the work done by a gas molecule is given $\mathrm{W}=\alpha^{2} \beta \mathrm{e}^{\frac{-\beta \mathrm{x}^{2}}{\mathrm{kT}}}$, where x is the displacement, k is the Boltzmann constant and T is the temperature. If α and β are constants, dimensions of α will be :
(1) $\left[\mathrm{MLT}^{-2}\right]$
(2) $\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]$
(3) $\left[\mathrm{M}^{2} \mathrm{LT}^{-2}\right]$
(4) $\left[\mathrm{MLT}^{-1}\right]$

Official Ans. by NTA (2)
Sol. kT has dimension of energy
$\frac{\beta \mathrm{x}^{2}}{\mathrm{kT}}$ is dimensionless
$[\beta]\left[\mathrm{L}^{2}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
$[\beta]=\left[\mathrm{MT}^{-2}\right]$
$\alpha^{2} \beta$ has dimensions of work
$\left[\alpha^{2}\right]\left[\mathrm{MT}^{-2}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
$[\alpha]=\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]$
Ans. 2
4. If λ_{1} and λ_{2} are the wavelengths of the third member of Lyman and first member of the Paschen series respectively, then the value of $\lambda_{1}: \lambda_{2}$ is :
(1) $1: 9$
(2) $7: 108$
(3) $7: 135$
(4) $1: 3$

Official Ans. by NTA (3)
Sol. $\frac{1}{\lambda_{1}}=R\left[\frac{1}{1^{2}}-\frac{1}{4^{2}}\right]$
$\frac{1}{\lambda_{2}}=\mathrm{R}\left[\frac{1}{3^{2}}-\frac{1}{4^{2}}\right]$
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{\left[\frac{1}{9}-\frac{1}{16}\right]}{\left[1-\frac{1}{16}\right]}=\frac{7}{9 \times 15}$
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{7}{135}$
Ans. (3)
5. A short straight object of height 100 cm lies before the central axis of a spherical mirror whose focal length has absolute value $|\mathrm{f}|=40 \mathrm{~cm}$. The image of object produced by the mirror is of height 25 cm and has the same orientation of the object. One may conclude from the information :
(1) Image is real, same side of concave mirror.
(2) Image is virtual, opposite side of concave mirror.
(3) Image is real, same side of convex mirror.
(4) Image is virtual, opposite side of convex mirror.

Official Ans. by NTA (4)

Sol. Since orientation is same image is virtual. Since image is smaller the mirror has to be convex Ans. (4)
6. Assume that a tunnel is dug along a chord of the earth, at a perpendicular distance $(R / 2)$ from the earth's centre, where ' R ' is the radius of the Earth. The wall of the tunnel is frictionless. If a particle is released in this tunnel, it will execute a simple harmonic motion with a time period :
(1) $\frac{2 \pi R}{g}$
(2) $\frac{g}{2 \pi R}$
(3) $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~g}}{\mathrm{R}}}$
(4) $2 \pi \sqrt{\frac{R}{g}}$

Official Ans. by NTA (4)

Sol.

Force along the tunnel
$\mathrm{F}=-\left(\frac{\mathrm{GMmr}}{\mathrm{R}^{3}}\right) \cos \theta$
$\mathrm{F}=-\frac{\mathrm{gm}}{\mathrm{R}} \mathrm{x} \quad\left(\frac{\mathrm{GM}}{\mathrm{R}^{2}}=\mathrm{g}, \mathrm{r} \cos \theta=\mathrm{x}\right)$
$a=-\frac{g}{R} x$
$\omega^{2}=\frac{g}{R} \quad T=2 \pi \sqrt{\frac{R}{g}}$
Ans. (4)
7. An alternating current is given by the equation $\mathrm{i}=\mathrm{i}_{1} \sin \omega \mathrm{t}+\mathrm{i}_{2} \cos \omega \mathrm{t}$. The rms current will be
(1) $\frac{1}{\sqrt{2}}\left(\mathrm{i}_{1}^{2}+\mathrm{i}_{2}^{2}\right)^{\frac{1}{2}}$
(2) $\frac{1}{\sqrt{2}}\left(i_{1}+i_{2}\right)^{2}$
(3) $\frac{1}{2}\left(\mathrm{i}_{1}^{2}+\mathrm{i}_{2}^{2}\right)^{\frac{1}{2}}$
(4) $\frac{1}{\sqrt{2}}\left(i_{1}+i_{2}\right)$

Official Ans. by NTA (1)
Sol. $i=i_{1} \sin \omega t+i_{2} \sin (\omega t+90)$
$\mathrm{i}=\sqrt{\mathrm{i}_{1}^{2}+\mathrm{i}_{2}^{2}} \sin (\omega \mathrm{t}+\phi)$
$i_{\text {rms }}=\frac{i_{0}}{\sqrt{2}}=\frac{\sqrt{i_{1}^{2}+i_{2}^{2}}}{\sqrt{2}}$
8. The normal density of a material is ρ and its bulk modulus of elasticity is K . The magnitude of increase in density of material, when a pressure P is applied uniformly on all sides, will be :
(1) $\frac{\rho K}{P}$
(2) $\frac{\rho P}{K}$
(3) $\frac{K}{\rho P}$
(4) $\frac{P K}{\rho}$

Official Ans. by NTA (2)
Sol. $\rho=\frac{M}{V}$
$\frac{d \rho}{\rho}=-\frac{d V}{V}$
$k=-\frac{P}{\frac{d V}{V}}$
$-\frac{\mathrm{dV}}{\mathrm{V}}=\frac{\mathrm{P}}{\mathrm{k}}$
$\frac{d \rho}{\rho}=\frac{P}{k} \Rightarrow d \rho=\frac{\rho P}{k}$
9. A particle is moving with uniform speed along the circumference of a circle of radius R under the action of a central fictitious force F which is inversely proportional to R^{3}. Its time period of revolution will be given by :
(1) $\mathrm{T} \propto \mathrm{R}^{2}$
(2) $T \propto R^{\frac{3}{2}}$
(3) $\mathrm{T} \propto \mathrm{R}^{\frac{5}{2}}$
(4) $\mathrm{T} \propto \mathrm{R}^{\frac{4}{3}}$

Official Ans. by NTA (1)
Sol. $\quad \mathrm{F} \propto \frac{1}{\mathrm{R}^{3}}$
$\frac{K}{R^{3}}=m \omega^{2} R$
$\omega^{2}=\frac{\mathrm{K}}{\mathrm{m}} \times \frac{1}{\mathrm{R}^{4}}$
$\left(\frac{2 \pi}{\mathrm{~T}}\right)^{2}=\frac{\mathrm{K}}{\mathrm{m}} \times \frac{1}{\mathrm{R}^{4}}$
$\mathrm{T}^{2} \propto \mathrm{R}^{4}$
$\mathrm{T} \propto \mathrm{R}^{2}$
10. A planet revolving in elliptical orbit has :
(A) a constant velocity of revolution.
(B) has the least velocity when it is nearest to the sun.
(C) its areal velocity is directly proportional to its velocity.
(D) areal velocity is inversely proportional to its velocity.
(E) to follow a trajectory such that the areal velocity is constant.
Choose the correct answer from the options given below :
(1) A only
(2) D only
(3) C only
(4) E only

Official Ans. by NTA (4)
Sol. As per Keppler's $2^{\text {nd }}$ law, Areal velocity is constant.
11. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Body ' P ' having mass M moving with speed ' u ' has head-on collision elastically with another body ' Q ' having mass ' m ' initially at rest. If $\mathrm{m} \ll \mathrm{M}$, body ' Q ' will have a maximum speed equal to ' 2 u ' after collision.
Reason R : During elastic collision, the momentum and kinetic energy are both conserved.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) A is not correct but R is correct.
(2) Both A and R are correct but R is NOT the correct explanation of A.
(3) Both A and R are correct and R is the correct explanation of A.
(4) A is correct but R is not correct.

Official Ans. by NTA (3)
Sol. For $\mathrm{e}=1 \&$ second body at rest
$\mathrm{V}_{2}=\frac{2 \mathrm{~m}_{1} \mathrm{u}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{2 \mathrm{u}(\mathrm{M})}{\mathrm{M}+\mathrm{m}} \simeq 2 \mathrm{u}$
Since M >> m
12. Four identical solid spheres each of mass ' m ' and radius 'a' are placed with their centres on the four corners of a square of side ' b '. The moment of inertia of the system about one side of square where the axis of rotation is parallel to the plane of the square is :
(1) $\frac{4}{5} \mathrm{ma}^{2}+2 \mathrm{mb}^{2}$
(2) $\frac{8}{5} m a^{2}+m b^{2}$
(3) $\frac{8}{5} \mathrm{ma}^{2}+2 m b^{2}$
(4) $\frac{4}{5} \mathrm{ma}^{2}$

Official Ans. by NTA (3)

Sol.

$\mathrm{I}=2 \times\left(\frac{2}{5} \mathrm{ma}^{2}\right)+2 \times\left(\frac{2}{5} \mathrm{ma}^{2}+\mathrm{mb}^{2}\right)$
$\mathrm{I}=\frac{8}{5} \mathrm{ma}^{2}+2 \mathrm{mb}^{2}$
13. In a Young's double slit experiment two slits are separated by 2 mm and the screen is placed one meter away. When a light of wavelength 500 nm is used, the fringe separation will be:
(1) 0.25 mm
(2) 0.50 mm
(3) 0.75 mm
(4) 1 mm

Official Ans. by NTA (1)
Sol. $\beta=\frac{\lambda \mathrm{D}}{\mathrm{d}}=\frac{500 \times 10^{-9} \times 1}{2 \times 10^{-3}}$
$\beta=\frac{5}{2} \times 10^{-4} \mathrm{~m}=2.5 \times 10^{-1} \mathrm{~mm}$
$\mathrm{b}=0.25 \mathrm{~mm}$
14. Find the electric field at point P (as shown in figure) on the perpendicular bisector of a uniformly charged thin wire of length L carrying a charge Q . The distance of the point P from the centre of the rod is $a=\frac{\sqrt{3}}{2} L$.

(1) $\frac{\sqrt{3} \mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{~L}^{2}}$
(2) $\frac{\mathrm{Q}}{3 \pi \varepsilon_{0} \mathrm{~L}^{2}}$
(3) $\frac{\mathrm{Q}}{2 \sqrt{3} \pi \varepsilon_{0} \mathrm{~L}^{2}}$
(4) $\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{~L}^{2}}$

Official Ans. by NTA (3)
Sol. $\mathrm{E}=\frac{\mathrm{k} \lambda}{\mathrm{a}}\left(\sin \theta_{1}+\sin \theta_{2}\right)$
$E=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{Q}{L} \times \frac{1}{\left(\frac{\sqrt{3} L}{2}\right)} \times(2 \sin \theta)$
$\tan \theta=\frac{\mathrm{L} / 2}{\frac{\sqrt{3} \mathrm{~L}}{2}}=\frac{1}{\sqrt{3}}$
$\sin \theta=\frac{1}{2}$
$\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{2 \mathrm{Q}}{\sqrt{3} \mathrm{~L}^{2}} \times\left(2 \times \frac{1}{2}\right)$
$\mathrm{E}=\frac{\mathrm{Q}}{2 \sqrt{3} \pi \varepsilon_{0} \mathrm{~L}^{2}}$
15. If two similar springs each of spring constant K_{1} are joined in series, the new spring constant and time period would be changed by a factor:
(1) $\frac{1}{2}, \sqrt{2}$
(2) $\frac{1}{4}, \sqrt{2}$
(3) $\frac{1}{4}, 2 \sqrt{2}$
(4) $\frac{1}{2}, 2 \sqrt{2}$

Official Ans. by NTA (1)
Sol. $\frac{1}{\mathrm{k}_{\mathrm{eq}}}=\frac{1}{\mathrm{k}_{1}}+\frac{1}{\mathrm{k}_{2}}$
$\frac{1}{\mathrm{k}_{\mathrm{eq}}}=\frac{1}{\mathrm{k}}+\frac{1}{\mathrm{k}} \Rightarrow \mathrm{k}_{\mathrm{eq}}=\frac{\mathrm{k}}{2}$
$k^{\prime}=\frac{\mathrm{k}}{2}$

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}}} \quad \mathrm{~T}^{\prime}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}^{\prime}}}
$$

$\Rightarrow \mathrm{T}^{\prime}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}}} \times \sqrt{2}$
$\mathrm{T}^{\prime}=\sqrt{2} \mathrm{~T}$
16. The temperature θ at the junction of two insulating sheets, having thermal resistances R_{1} and R_{2} as well as top and bottom temperatures θ_{1} and θ_{2} (as shown in figure) is given by :

(1) $\frac{\theta_{2} R_{2}-\theta_{1} R_{1}}{R_{2}-R_{1}}$
(2) $\frac{\theta_{1} R_{2}-\theta_{2} R_{1}}{R_{2}-R_{1}}$
(3) $\frac{\theta_{1} R_{2}+\theta_{2} R_{1}}{R_{1}+R_{2}}$
(4) $\frac{\theta_{1} R_{1}+\theta_{2} R_{2}}{R_{1}+R_{2}}$

Official Ans. by NTA (3)

Sol.

Heat flow rate will be same through both
$\therefore \frac{\theta_{1}-\theta}{\mathrm{R}_{1}}=\frac{\theta-\theta_{2}}{\mathrm{R}_{2}}$
$\mathrm{R}_{2} \theta_{1}-\mathrm{R}_{2} \theta=\mathrm{R}_{1} \theta-\mathrm{R}_{1} \theta_{2}$
$\theta=\frac{\mathrm{R}_{2} \theta_{1}+\mathrm{R}_{1} \theta_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
Ans. (3)
17. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : An electron microscope can achieve better resolving power than an optical microscope.
Reason R : The de Broglie's wavelength of the electrons emitted from an electron gun is much less than wavelength of visible light.
In the light of the above statements, choose the correct answer from the options given below:
(1) A is true but R is false.
(2) Both A and R are true and R is the correct explanation of A .
(3) Both A and R are true but R is NOT the correct explanation of A.
(4) A is false but R is true.

Official Ans. by NTA (2)
Sol. Resolving power $\propto \frac{1}{\lambda}$
Since wavelength of electron is much less than visible light, its resolving power will be much more.
18. LED is constructed from Ga-As-P semiconducting material. The energy gap of this LED is 1.9 eV . Calculate the wavelength of light emitted and its colour.
$\left[\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}\right.$ and $\left.\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}\right]$
(1) 1046 nm and red colour
(2) 654 nm and orange colour
(3) 1046 nm and blue colour
(4) 654 nm and red colour

Official Ans. by NTA (4)
Sol. $\quad \lambda=\frac{\mathrm{hc}}{\mathrm{E}}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{1.9 \times 1.6 \times 10^{-19}}=6.54 \times 10^{-7}$
$=654 \mathrm{~nm}$
Red color
19. A large number of water drops, each of radius r, combine to have a drop of radius R. If the surface tension is T and mechanical equivalent of heat is \mathbf{J}, the rise in heat energy per unit volume will be:
(1) $\frac{2 \mathrm{~T}}{\mathrm{~J}}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$
(2) $\frac{2 \mathrm{~T}}{\mathrm{rJ}}$
(3) $\frac{3 \mathrm{~T}}{\mathrm{rJ}}$
(4) $\frac{3 T}{J}\left(\frac{1}{r}-\frac{1}{R}\right)$

Official Ans. by NTA (4)
Sol. $\quad \mathrm{n} \times \frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \mathrm{R}^{3}$
$\therefore \mathrm{n}^{1 / 3} \mathrm{r}=\mathrm{R}$
\therefore Total change in surface energy

$$
=\left(n\left(4 \pi r^{2}\right)-4 \pi R^{2}\right) T
$$

$\Rightarrow 4 \pi \mathrm{~T}\left(\mathrm{nr}^{2}-\mathrm{R}^{2}\right)$
\therefore Heat energy
$=\frac{4 \pi \mathrm{~T}\left(\mathrm{nr}^{2}-\mathrm{R}^{2}\right)}{\mathrm{J} \times \frac{4}{3} \pi \mathrm{R}^{3}}=\frac{3 \mathrm{~T}}{\mathrm{~J}}\left(\frac{\mathrm{nr}^{2}}{\mathrm{R}^{3}}-\frac{1}{\mathrm{R}}\right)$

Put $\mathrm{nr}^{3}=\mathrm{R}^{3}$
$\therefore \frac{3 T}{\mathrm{~J}}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{R}}\right)$
20. Five equal resistances are connected in a network as shown in figure. The net resistance between the points A and B is :

(1) 2 R
(2) $\frac{R}{2}$
(3) $\frac{3 R}{2}$
(4) R

Official Ans. by NTA (4)
Sol. This diagram can be drawn like

It is a wheat stone bridge
$\therefore \quad R_{e q}=\frac{2 R \times 2 R}{2 R+2 R} \Rightarrow R$

SECTION-B

1. A person standing on a spring balance inside a stationary lift measures 60 kg . The weight of that person if the lift descends with uniform downward acceleration of $1.8 \mathrm{~m} / \mathrm{s}^{2}$ will be_ N . [$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]
Official Ans. by NTA (492)

Sol.

When lift is at rest
$\mathrm{N}=\mathrm{mg}$
$\Rightarrow 60 \times 10=600 \mathrm{~N}$
When lift moves with downward acceleration.
In frame of lift pseudo force will be in upward direction.

$\mathrm{N}^{\prime}=\mathrm{M}(\mathrm{g}-\mathrm{a})$
$\Rightarrow 60$ ($10-1.8$)
$\mathrm{N}^{\prime} \Rightarrow 492 \mathrm{~N}$
2. In an electrical circuit, a battery is connected to pass 20 C of charge through it in a certain given time. The potential difference between two plates of the battery is maintained at 15 V . The work done by the battery is \qquad J.

Official Ans. by NTA (300)
Sol. Work done by battery $=\mathrm{Q}(\Delta \mathrm{V})$
$\Rightarrow 20 \times 15=300 \mathrm{~J}$
\therefore Ans. 300
3. The circuit contains two diodes each with a forward resistance of 50Ω and with infinite reverse resistance. If the battery voltage is 6 V , the current through the 120Ω resistance is_ mA .

Official Ans. by NTA (20)

Sol.

In this circuit D_{1} will be forward bias and D_{2} will be revers bias.
\therefore There will be no current through D_{2} and R_{2} Apply KVL in circuit we get
$+6-50 \mathrm{i}-130 \mathrm{i}-120 \mathrm{i}=0$
$i=\frac{6}{300} A=\frac{6}{300} \times 1000 \mathrm{~mA}$
$\Rightarrow 20 \mathrm{~mA}$
4. A radiation is emitted by 1000 W bulb and it generates an electric field and magnetic field at P, placed at a distance of 2 m . The efficiency of the bulb is 1.25%. The value of peak electric field at P is $\mathrm{x} \times 10^{-1} \mathrm{~V} / \mathrm{m}$. Value of x is_. (Rounded-off to the nearest integer)
$\left[\right.$ Take $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}, \mathrm{c}=3 \times 10^{8}$ ms^{-1}]
Official Ans. by NTA (137)
Sol. $\quad \mathrm{I}_{\mathrm{avg}}=\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2} \mathrm{C}$
$\frac{1.25}{100} \times \frac{1000}{4 \pi(2)^{2}}=\frac{1}{2} \times 8.85 \times 10^{-12} \times 3$
$\times 10^{8} \times E_{0}^{2}$
$\mathrm{E}_{0}^{2}=187.4$
$\therefore \mathrm{E}_{0}=13.689 \mathrm{~V} / \mathrm{m}$
$=136.89 \times 10^{-1} \mathrm{~V} / \mathrm{m}$
$\therefore \mathrm{x}=136.89$
Rounding off to nearest integer
$\mathrm{x}=137$
5. A boy pushes a box of mass 2 kg with a force $\overrightarrow{\mathrm{F}}=(20 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}) \mathrm{N}$ on a frictionless surface. If the box was initially at rest, then \qquad m is displacement along the x -axis after 10 s .
Official Ans. by NTA (500)
Sol. $\overrightarrow{\mathrm{F}}=20 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{a}}=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{m}}=\frac{20 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}}{2} \Rightarrow 10 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}$
$\therefore \overrightarrow{\mathrm{s}}=\frac{1}{2} \overrightarrow{\mathrm{a}} \mathrm{t}^{2}=\frac{1}{2}(10 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}) \times(10)^{2}$
$\Rightarrow 50(10 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}) \mathrm{m}$
\therefore Displacement along x -axis
$\Rightarrow 50 \times 10 \Rightarrow 500 \mathrm{~m}$
\therefore Ans. 500
6. As shown in the figure, a block of mass $\sqrt{3} \mathrm{~kg}$ is kept on a horizontal rough surface of coefficient of friction $\frac{1}{3 \sqrt{3}}$. The critical force to be applied on the vertical surface as shown at an angle 60° with horizontal such that it does not move, will be $3 x$. The value of x will be $\left[\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2} ; \sin 60^{\circ}=\frac{\sqrt{3}}{2} ; \cos 60^{\circ}=\frac{1}{2}\right]$

Official Ans. by NTA (10)
Allen Ans. (3.33)

Sol.

$F \cos 60^{\circ}=\mu N$ or $\frac{F}{2}=\frac{1}{3 \sqrt{3}} N$
$\& \mathrm{~N}=\sin 60^{\circ}+\sqrt{3} \mathrm{~g}$
From equation (1) \& (2)
$\frac{F}{2}=\frac{1}{3 \sqrt{3}}\left(\frac{\mathrm{~F} \sqrt{3}}{2}+\sqrt{3} \mathrm{~g}\right)$
$\Rightarrow F=g=10$ Newton $=3 x$
So $x=\frac{10}{3}=3.33$
7. A container is divided into two chambers by a partition. The volume of first chamber is 4.5 litre and second chamber is 5.5 litre. The first chamber contain 3.0 moles of gas at pressure 2.0 atm and second chamber contain 4.0 moles of gas at pressure 3.0 atm . After the partition is removed and the mixture attains equilibrium, then, the common equilibrium pressure existing in the mixture is $\mathrm{x} \times 10^{-1} \mathrm{~atm}$. Value of x is_.
Official Ans. by NTA (25)
Allen Ans. (25.50)
Sol. Let common equilibrium pressure of mixture is P atmp. then

$$
\begin{gathered}
\mathrm{U}_{1}+\mathrm{U}_{2}=\mathrm{U}_{\text {mixutre }} \\
\frac{\mathrm{f}}{2} \mathrm{P}_{1} \mathrm{~V}_{1}+\frac{\mathrm{f}}{2} \mathrm{P}_{2} \mathrm{~V}_{2}=\frac{\mathrm{f}}{2} \mathrm{P}\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)
\end{gathered}
$$

$\frac{\mathrm{f}}{2}(2)(4.5)+\frac{\mathrm{f}}{2}(3)(5.5)=\frac{\mathrm{f}}{2} \mathrm{P}(4.5+5.5)$
$\Rightarrow \mathrm{P}=2.55=\mathrm{x} \times 10^{-1} \mathrm{atmp}$
So $x=25.5 \approx 26$ (Nearest integer)
8. The mass per unit length of a uniform wire is $0.135 \mathrm{~g} / \mathrm{cm}$. A transverse wave of the form $y=-0.21 \sin (x+30 t)$ is produced in it, where x is in meter and t is in second. Then, the expected value of tension in the wire is $x \times 10^{-2} \mathrm{~N}$. Value of x is . (Round-off to the nearest integer)
Official Ans. by NTA (12)
Allen Ans. (1215)
Sol. $\mu=0.135 \mathrm{gm} / \mathrm{cm}=0.0135 \mathrm{~kg} / \mathrm{m}$
$y=-0.21 \sin (x+30 t)$
(x in meter \& t in sec)
$\mathrm{v}=\frac{\omega}{\mathrm{k}}=\frac{30}{1}=30 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=\sqrt{\frac{\mathrm{T}}{\mu}} \Rightarrow \mathrm{T}=\mathrm{v}^{2} \mu=(30)^{2}(0.0135)$
$=12.15$
$=\mathrm{x} \times 10^{-2} \mathrm{~N}$
$\Rightarrow \mathrm{x}=1215$
9. In a series LCR resonant circuit, the quality factor is measured as 100 . If the inductance is increased by two fold and resistance is decreased by two fold, then the quality factor after this change will be \qquad _.
Official Ans. by NTA (400)
Allen Ans. (282.84)

Sol. $\mathrm{Q}=\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}=\frac{\omega \mathrm{L}}{\mathrm{R}}=\frac{1}{\sqrt{\mathrm{LC}}} \frac{\mathrm{L}}{\mathrm{R}}=\frac{\sqrt{\mathrm{L}}}{\mathrm{R} \sqrt{\mathrm{C}}}$
$Q^{\prime}=\frac{\sqrt{2 L}}{\left(\frac{R}{2}\right) \sqrt{C}}=2 \sqrt{2} Q=2 \sqrt{2}(100)$

$$
=282.84
$$

10. The maximum and minimum amplitude of an amplitude modulated wave is 16 V and 8 V respectively. The modulation index for this amplitude modulated wave is $\mathrm{x} \times 10^{-2}$. The value of x is \qquad _.
Official Ans. by NTA (33)

Sol. Modulation index $=\frac{A_{\max }-A_{\text {min }}}{A_{\text {max }}+A_{\text {min }}}$

$$
=\frac{16-8}{16+8}=\frac{8}{24}=\frac{1}{3}=0.33
$$

$\mathrm{x} \times 10^{-2}=0.33$
$\mathrm{x}=33$

CHEMISTRY

SECTION-A

1. The structure of Neoprene is -
(1)

(2)

(3) $\left.-\mathrm{CH}_{2}-\stackrel{\mathrm{Cl}}{\mathrm{C}}=\mathrm{CH}-\mathrm{CH}_{2}\right]_{\mathrm{n}}$
(4)

Official Ans. by NTA (3)
Sol.

Chloroprene

2-Chloro-1, 3-Butadiene

Neoprene
2. Find A, B and C in the following reactions:
$\mathrm{NH}_{3}+\mathrm{A}+\mathrm{CO}_{2} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{B} \rightarrow \mathrm{NH}_{4} \mathrm{HCO}_{3}$
$\mathrm{NH}_{4} \mathrm{HCO}_{3}+\mathrm{NaCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{C}$
(1) $\mathrm{A}-\mathrm{O}_{2} ; \mathrm{B}-\mathrm{CO}_{2} ; \mathrm{C}-\mathrm{Na}_{2} \mathrm{CO}_{3}$
(2) $\mathrm{A}-\mathrm{H}_{2} \mathrm{O} ; \mathrm{B}-\mathrm{O}_{2} ; \mathrm{C}-\mathrm{Na}_{2} \mathrm{CO}_{3}$
(3) $\mathrm{A}-\mathrm{H}_{2} \mathrm{O} ; \mathrm{B}-\mathrm{O}_{2} ; \mathrm{C}-\mathrm{NaHCO}_{3}$
(4) $\mathrm{A}-\mathrm{H}_{2} \mathrm{O} ; \mathrm{B}-\mathrm{CO}_{2} ; \mathrm{C}-\mathrm{NaHCO}_{3}$

Official Ans. by NTA (4)

Sol. $2 \mathrm{NH}_{3}+\underset{(\mathrm{A})}{\mathrm{H}_{2} \mathrm{O}}+\mathrm{CO}_{2} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\underset{\text { (B) }}{\mathrm{CO}_{2}} \longrightarrow 2 \mathrm{NH}_{4} \mathrm{HCO}_{3}$
$\mathrm{NH}_{4} \mathrm{HCO}_{3}+\mathrm{NaCl} \longrightarrow \underset{\text { (C) }}{\mathrm{NaHCO}_{3}}+\mathrm{NH}_{4} \mathrm{Cl}$
3. The presence of ozone in troposphere
(1) Protects us from the UV radiation
(2) Protects us from the X-ray radiation
(3) Protects us from greenhouse effect
(4) generates photochemical smog

Official Ans. by NTA (4)
Sol. The presence of ozone in troposphere generates photochemical smog.
4. Match List -I with List - II

List - I

Electronic configuration
of elements
(a) $1 s^{2} 2 s^{2}$
(i) 801
(b) $1 s^{2} 2 s^{2} 2 p^{4}$
(ii) 899
(c) $1 s^{2} 2 s^{2} 2 p^{3}$
(iii) 1314
(d) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}$
(iv) 1402

Choose the most appropriate answer from the options given below -
(1) (a) \rightarrow (ii), (b) \rightarrow (iii), (c) \rightarrow (iv), (d) \rightarrow (i)
(2) (a) \rightarrow (i), (b) \rightarrow (iv), (c) \rightarrow (iii),(d) \rightarrow (ii)
(3) (a) \rightarrow (i), (b) \rightarrow (iii), (c) \rightarrow (iv),(d) \rightarrow (ii)
(4) (a) \rightarrow (iv), (b) \rightarrow (i), (c) \rightarrow (ii),(d) \rightarrow (iii)

Official Ans. by NTA (1)
Sol. (a) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} \rightarrow \mathrm{Be}$
(b) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4} \rightarrow \mathrm{O}$
(c) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3} \rightarrow \mathrm{~N}$
(d) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1} \rightarrow \mathrm{~B}$

The ionization enthalpy order is
$\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}$
Be has more IE compared to B due to extra stability \& N has more IE compared to oxygen due to extra stability
Hence, $\mathrm{N} \rightarrow 1402 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{O} \rightarrow 1314 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{B} \rightarrow 801 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{Be} \rightarrow 899 \mathrm{~kJ} / \mathrm{mol}$
5. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Dipole-dipole interactions are the only non-covalent interactions, resulting in hydrogen bond formation.
Reason R : Fluorine is the most electronegative element and hydrogen bonds in HF are symmetrical.

In the light of the above statements, choose the most appropriate answer from the options given below.
(1) A is false but R is true
(2) Both A and R are true and R is the correct explanation of A
(3) A is true R is false
(4) Both A and R are true but R is NOT the correct explanation of A
Official Ans. by NTA (1)
Sol. Assertion is incorrect since in hydrogen bonding, Dipole-dipole interactions are noncovalent but ion-dipole interaction can also result in H -bond formation. Reason is correct since F is most electronegative element \& structure is

Symmetrical H-bonds are present
6. Statements about heavy water are given below.
A. Heavy water is used in exchange reactions for the study of reaction mechanisms.
B. Heavy water is prepared by exhaustive electrolysis of water
C. Heavy water has higher boiling point than ordinary water.
D. Viscosity of $\mathrm{H}_{2} \mathrm{O}$ is greater than $\mathrm{D}_{2} \mathrm{O}$
(1) A, B and C only
(2) A and B only
(3) A and D only
(4) A and C only

Official Ans. by NTA (1)
Sol. Heavy water is used in exchange reactions for study of reaction mechanisms Heavy water is prepared by exhaustive electrolysis of water.
B.P. of $\mathrm{D}_{2} \mathrm{O}=374.4 \mathrm{~K}$
B.P. of $\mathrm{H}_{2} \mathrm{O}=373 \mathrm{~K}$

Viscosity of $\mathrm{H}_{2} \mathrm{O}=0.89$ centipoise
Viscosity of $\mathrm{D}_{2} \mathrm{O}=1.107$ centipoise
7. The orbital having two radial as well as two angular nodes is -
(1) $3 p$
(2) $4 f$
(3) 4 d
(4) 5 d
7. Offcial Ans. by NTA (4)

Sol. $\mathrm{n}-l-1=2$
$1=2$
n-2-1 $=2$
$\mathrm{n}=5$
8. Match List -I with List - II

List - I
(Ore)
(a) Kernite
(b) Cassiterite
(c) Calamine
(d) Cryolite

List - II
 (Element Present)

(i) Tin
(ii) Boron
(iii) Fluorine
(iv) Zinc

Choose the most appropriate answer from the options given below.
(1) (a) \rightarrow (i), (b) \rightarrow (iii), (c) \rightarrow (iv), (d) \rightarrow (ii)
(2) (a) \rightarrow (ii), (b) \rightarrow (i), (c) \rightarrow (iv), (d) \rightarrow (iii)
(3) (a) \rightarrow (ii), (b) \rightarrow (iv), (c) \rightarrow (i), (d) \rightarrow (iii)
(4) (a) \rightarrow (iii), (b) \rightarrow (i), (c) \rightarrow (ii), (d) \rightarrow (iv)

Official Ans. by NTA (2)
Sol. Kernite $=\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} .4 \mathrm{H}_{2} \mathrm{O}$
Cassiterite $=\mathrm{SnO}_{2}$
Calamine $=\mathrm{ZnCO}_{3}$
Cryolite $=\mathrm{Na}_{3} \mathrm{~A} \ell \mathrm{~F}_{6}$
9. Identify the major products A and B respectively in the following reactions of phenol.

(1)

(2)

and

(3)
 and

(4)
 and

Official Ans. by NTA (2)
Sol.
(B)

(Salicylaldehyde)

OH
(A)

- p -Bromo phenol

10. Given below are two statements :

Statement I : A mixture of chloroform and aniline can be separated by simple distillation.
Statement II : When separating aniline from a mixture of aniline and water by steam distillation aniline boils below its boiling point. In the light of the above statements, choose the most appropriate answer from the options given below.
(1) Statement-I is false but Statement II is true
(2) Both Statement-I and Statement II are false
(3) Statement-I is true but Statement II is false
(4) Both Statement-I and Statement II are true Official Ans. by NTA (4)

Sol. Statement 1 : B.P. of chloroform $=334 \mathrm{~K}$ B.P. of aniline $=457 \mathrm{~K}$ thus can be seprated of simple distillation.
Statement 2 : Mixture of aniline and water seprated by simple distillation.
11. For the given reaction :

(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(2)

(3)

(4)

Official Ans. by NTA (4)

Sol.

12. On treating a compound with warm dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$, gas X is evolved which turns $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ paper acidified with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to a green compound Y. X and Y respectively are -
(1) $\mathrm{X}=\mathrm{SO}_{2}, \mathrm{Y}=\mathrm{Cr}_{2} \mathrm{O}_{3}$
(2) $\mathrm{X}=\mathrm{SO}_{3}, \mathrm{Y}=\mathrm{Cr}_{2} \mathrm{O}_{3}$
(3) $\mathrm{X}=\mathrm{SO}_{2}, \mathrm{Y}=\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(4) $\mathrm{X}=\mathrm{SO}_{3}, \mathrm{Y}=\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Official Ans. by NTA (3)
Sol. $\mathrm{SO}_{2}+$ dil $\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{SO}_{3}(\mathrm{~g})$
$\mathrm{SO}_{3}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\text { dil. }} \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
13. Which of the following is ' a ' FALSE statement?
(1) Carius tube is used in the estimation of sulphur in an organic compound
(2) Carius method is used for the estimation of nitrogen in an organic compound
(3) Phosphoric acid produced on oxidation of phosphorus present in an organic compound is precipitated as $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ by adding magnesia mixture.
(4) Kjeldahl's method is used for the estimation of nitrogen in an organic compound
Official Ans. by NTA (2)
Sol. Carius method is used in the estimation of halogen in organic compounds.
14. Which of the following vitamin is helpful in delaying the blood clotting -
(1) Vitamin C
(2) Vitamin B
(3) Vitamin E
(4) Vitamin K

Official Ans. by NTA (4)
Sol. Vitamin helpful in delaying the blood clotting is Vitamin K
15. $\underset{\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}\right)}{\mathrm{A}} \stackrel{\text { Hydrolysis }}{373 \mathrm{~K}} \underset{\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)}{\mathrm{B}}$

B reacts with Hydroxyl amine but does not give Tollen's test. Identify A and B
(1) 1,1-Dichlorobutane and 2-Butanone
(2) 2,2-Dichlorobutane and Butanal
(3) 1,1-Dichlorobutane and Butanal
(4) 2,2-Dichlorobutane and 2-butan-one

Official Ans. by NTA (4)
Sol.

16. Compound A used as a strong oxidizing agent is amphoteric in nature. It is the part of lead storage batteries. Compound A is :
(1) PbO_{2}
(2) PbO
(3) PbSO_{4}
(4) $\mathrm{Pb}_{3} \mathrm{O}_{4}$

Official Ans. by NTA (1)
Sol. PbO_{2} is amphoteric and strong oxidizing agent and also a component of lead storage batteries.
17. Which one of the following lanthanoids does not form MO_{2} ? [M is lanthanoid metal]
(1) Pr
(2) Dy
(3) Nd
(4) Yb

Official Ans. by NTA (4)
Sol. Yb is the only element that do not form MO_{2} type oxide
18. Given below are two statements :

Statement I : o-Nitrophenol is steam volatile due to intramolecular hydrogen bonding.
Statement II : o-Nitrophenol has high melting due to hydrogen bonding.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement I is false but Statement II is true
(2) Both statement I and statement II are true
(3) Both statement I and statement II are false
(4) Statement I is true but statement II is false

Official Ans. by NTA (4)

Sol.

Intramolecular
H -bonding
thus it is more volatile due to intramolecular H -bonding.
Melting point depends on packing efficiency not on H-bonding thus statement II is false
19. For the given reaction :

$$
\xrightarrow[\text { UV light }]{\mathrm{Br}_{2}} \underset{\substack{\text { (major product) } \\ \text { monobrominated }}}{\text { 'A' }}
$$

What is 'A'?
(1)

(2)

(3)

(4)

Official Ans. by NTA (3)

Sol.

20. An amine on reaction with benzenesulphonyl chloride produces a compound insoluble in alkaline solution. This amine can be prepared by ammonolysis of ethyl chloride. The correct structure of amine is :
(1)

(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(3)

(4)

Official Ans. by NTA (4)
Sol. It has to be 2° amine because on reaction with benzene sulphonylchloride it gives water in soluble product. As it is formed by ammonolysis of ethylchloride, so it has to be R-NH-Et type.

SECTION-B

1. For a chemical reaction $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$ $\left(\Delta_{\mathrm{r}} \mathrm{H}^{0}=80 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ the entropy change $\Delta_{\mathrm{r}} \mathrm{S}^{0}$ depends on the temperature T (in K) as $\left(\Delta_{\mathrm{r}} \mathrm{S}^{0}=2 \mathrm{~T}_{\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)}\right.$.
Minimum temperature at which it will become spontaneous is \qquad K.(Integer)
2. Official Ans. by NTA (200)
$\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \times \Delta \mathrm{S}^{0}$
$\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \times(2 \mathrm{~T})$
$\mathrm{T}=200 \mathrm{~K}$
3. The number of significant figures in 50000.020×10^{-3} is \qquad .
4. Official Ans. by NTA (7)

Sol. $\underline{50000.020} \times 10^{-3}$
3. An exothermic reaction $X \rightarrow Y$ has an activation energy $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If energy change $\Delta \mathrm{E}$ during the reaction is -20 kJ , then the activation energy for the reverse reaction in kJ is \qquad .(Integer answer)
3. Official Ans. by NTA (50)

Sol. $X \longrightarrow Y$

4. Consider the following reaction
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}, \mathrm{E}^{\mathrm{o}}=1.51 \mathrm{~V}$.
The quantity of electricity required in Faraday to reduce five moles of MnO_{4}^{-}is \qquad _.
4. Official Ans. by NTA (25)
5. A certain gas obeys $P\left(V_{m}-b\right)=R T$. The value of $\left(\frac{\partial \mathrm{Z}}{\partial \mathrm{P}}\right)_{\mathrm{T}}$ is $\frac{x \mathrm{~b}}{\mathrm{RT}}$. The value of x is \qquad .
(Integer answer) (Z : compressibility factor)
5. Official Ans. by NTA (1)

Sol. $\mathrm{Z}=1+\frac{\mathrm{Pb}}{\mathrm{RT}}$
$\left(\frac{\partial \mathrm{Z}}{\mathrm{dP}}\right)_{\mathrm{T}}=0+\frac{\mathrm{b}}{\mathrm{RT}} \times 1$
6. A homogeneous ideal gaseous reaction $\mathrm{AB}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{A}_{(\mathrm{g})}+2 \mathrm{~B}_{(\mathrm{g})}$ is carried out in a 25 litre flask at $27^{\circ} \mathrm{C}$. The initial amount of AB_{2} was 1 mole and the equilibrium pressure was 1.9 atm . The value of K_{P} is $x \times 10^{-2}$. The value of x is \qquad .(Integer answer)
Official Ans. by NTA (74)
Allen Ans.(72 to 75)

Sol. $\mathrm{AB}_{2}=\mathrm{A}+2 \mathrm{~B}$
1 -
$1-\alpha \quad \alpha \quad 2 \alpha$
$=0.5350 .465 \quad 0.93$
$1.9 \times 25=\mathrm{n}_{\mathrm{T}} \times 0.08206 \times 300$
$\mathrm{n}_{\mathrm{T}}=1.93=1+2 \alpha$
$\alpha=0.465$
$K p=\frac{\left(\frac{0.465}{1.93} \times 19\right)\left(\frac{0.93}{1.93} \times 1.9\right)^{2}}{\left(\frac{0.535}{1.93} \times 1.9\right)}$
$\simeq 73 \times 10^{-2} \mathrm{~atm}^{2}$
7. Dichromate ion is treated with base, the oxidation number of Cr in the product formed is \qquad .

Official Ans. by NTA (6)
Sol. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{OH}^{-} \longrightarrow \mathrm{CrO}_{4}^{2-}$

Oxidation state of Cr in CrO_{4}^{2-} is +6
8. 224 mL of $\mathrm{SO}_{2(\mathrm{~g})}$ at 298 K and 1 atm is passed through 100 mL of 0.1 M NaOH solution. The non-volatile solute produced is dissolved in 36 g of water. The lowering of vapour pressure of solution (assuming the solution is dilute)
$\left(\mathrm{P}_{\left(\mathrm{H}_{2} \mathrm{O}\right)}=24 \mathrm{~mm}\right.$ of Hg$)$ is $x \times 10^{-2} \mathrm{~mm}$ of Hg , the value of x is \qquad . (Integer answer)
8. Official Ans. by NTA (12)

Allen Ans. 18 to 24)
Sol.(1) $\mathrm{SO}_{2}+2 \mathrm{NaOH} \quad \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\begin{array}{lll}\frac{224}{0.0821 \times 298} & \begin{array}{l}10 \mathrm{mmol} \\ (\text { L.R. })\end{array} & 5 \mathrm{mmol} \\ (\mathrm{i}=3)\end{array}$
$=9.2 \mathrm{~m} \mathrm{~mol}$

$$
\begin{aligned}
\mathrm{P}^{\mathrm{s}} & =\mathrm{P}^{0} \cdot \mathrm{X}_{\text {solvent }} \\
& =24 \times \frac{2}{\left(2+15 \times 10^{-3}\right)} \\
& =23.82 \\
\Delta \mathrm{P}= & 0.18 \text { torr }=18 \times 10^{-2} \text { torr. }
\end{aligned}
$$

Sol.(2) $\mathrm{SO}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaHSO}_{3}$

9.2	10	-
-	0.8	9.2

$\Delta \mathrm{P}=\mathrm{P}^{0} . \mathrm{X}_{\text {solute }}$
$=24 \times \frac{(1.6+18.4)}{2020}$

$$
=0.2376=23.76 \times 10^{-2}
$$

9. 3.12 g of oxygen is adsorbed on 1.2 g of platinum metal. The volume of oxygen adsorbed per gram of the adsorbent at 1 atm and 300 K in L is \qquad
$\left[\mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$
10. Official Ans. by NTA (2)

Sol. $\mathrm{V}=\frac{\frac{3.12}{32} \times 0.0821 \times 300}{1}=2.40 \mathrm{l}$
$\because 1.2 \mathrm{gm}$ adsorbs 2.40 l
$\therefore 1$ gm adsorbs $2 l$
10. Number of bridging CO ligands in $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ is \qquad .
Official Ans. by NTA (0)
Sol. $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ structure is

Zero bridging CO ligands are present

SECTION-A

1. If \vec{a} and \vec{b} are perpendicular, then $\vec{a} \times(\vec{a} \times(\vec{a} \times(\vec{a} \times \vec{b})))$ is equal to
(1) $\overrightarrow{0}$
(2) $\frac{1}{2}|\vec{a}|^{4} \vec{b}$
(3) $\vec{a} \times \vec{b}$
(4) $|\vec{a}|^{4} \vec{b}$

Official Ans. by NTA (4)
Sol. $\vec{a} \cdot \vec{b}=0$
$\vec{a} \times(\vec{a} \times \vec{b})=(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}=-|\vec{a}|^{2} \vec{b}$
Now $\vec{a} \times\left(\vec{a} \times\left(-|\vec{a}|^{2} \vec{b}\right)\right)$
$=-|\vec{a}|^{2}(\vec{a} \times(\vec{a} \times \vec{b}))$
$=-|\vec{a}|^{2}\left(-|\vec{a}|^{2} \vec{b}\right)=|\vec{a}|^{4} \vec{b}$
2. A fair coin is tossed a fixed number of times. If the probability of getting 7 heads is equal to probability of getting 9 heads, then the probability of getting 2 heads is
(1) $\frac{15}{2^{13}}$
(2) $\frac{15}{2^{12}}$
(3) $\frac{15}{2^{8}}$
(4) $\frac{15}{2^{14}}$

Official Ans. by NTA (1)
Sol. Let the coin be tossed n-times
$\mathrm{P}(\mathrm{H})=\mathrm{P}(\mathrm{T})=\frac{1}{2}$
$\mathrm{P}(7$ heads $)={ }^{\mathrm{n}} \mathrm{C}_{7}\left(\frac{1}{2}\right)^{\mathrm{n}-7}\left(\frac{1}{2}\right)^{7}=\frac{{ }^{\mathrm{n}} \mathrm{C}_{7}}{2^{\mathrm{n}}}$
$P(9$ heads $)={ }^{\mathrm{n}} \mathrm{C}_{9}\left(\frac{1}{2}\right)^{\mathrm{n}-9}\left(\frac{1}{2}\right)^{9}=\frac{{ }^{\mathrm{n}} \mathrm{C}_{9}}{2^{\mathrm{n}}}$
$\mathrm{P}(7$ heads $)=\mathrm{P}(9$ heads $)$
${ }^{\mathrm{n}} \mathrm{C}_{7}={ }^{\mathrm{n}} \mathrm{C}_{9} \Rightarrow \mathrm{n}=16$
$\mathrm{P}(2$ heads $)={ }^{16} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{14}\left(\frac{1}{2}\right)^{2}=\frac{15 \times 8}{2^{16}}$
$\mathrm{P}(2$ heads $)=\frac{15}{2^{13}}$
3. Let A be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of A^{2} is 1 , then the possible number of such matrices is
(1) 4
(2) 1
(3) 6
(4) 12

Official Ans. by NTA (1)
Sol. $\quad A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right), \quad a, b, c \in I$
$A^{2}=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)=\left(\begin{array}{ll}a^{2}+b^{2} & b(a+c) \\ b(a+c) & b^{2}+c^{2}\end{array}\right)$
Sum of the diagonal entries of
$\mathrm{A}^{2}=\mathrm{a}^{2}+2 \mathrm{~b}^{2}+\mathrm{c}^{2}$
Given $\mathrm{a}^{2}+2 \mathrm{~b}^{2}+\mathrm{c}^{2}=1, a, b, c \in I$
$\mathrm{b}=0 \& \mathrm{a}^{2}+\mathrm{c}^{2}=1$
Case-1 : $\mathrm{a}=0 \Rightarrow \mathrm{c}= \pm 1 \quad$ (2-matrices)
Case-2 : $\mathrm{c}=0 \Rightarrow \mathrm{a}= \pm 1$
(2-matrices)
Total $=4$ matrices
4. In a increasing geometric series, the sum of the second and the sixth term is $\frac{25}{2}$ and the product of the third and fifth term is 25 . Then, the sum of $4^{\text {th }}, 6^{\text {th }}$ and $8^{\text {th }}$ terms is equal to
(1) 30
(2) 26
(3) 35
(4) 32

Official Ans. by NTA (3)
Sol. a, ar, ar^{2}, \ldots
$\mathrm{T}_{2}+\mathrm{T}_{6}=\frac{25}{2} \Rightarrow \operatorname{ar}\left(1+\mathrm{r}^{4}\right)=\frac{25}{2}$
$\mathrm{a}^{2} \mathrm{r}^{2}\left(1+\mathrm{r}^{4}\right)^{2}=\frac{625}{4}$
$\mathrm{T}_{3} . \mathrm{T}_{5}=25 \Rightarrow\left(\mathrm{ar}^{2}\right)\left(\mathrm{ar}^{4}\right)=25$
$\mathrm{a}^{2} \mathrm{r}^{6}=25$
On dividing (1) by (2)
$\frac{\left(1+\mathrm{r}^{4}\right)^{2}}{\mathrm{r}^{4}}=\frac{25}{4}$
$4 \mathrm{r}^{8}-17 \mathrm{r}^{4}+4=0$
$\left(4 r^{4}-1\right)\left(r^{4}-4\right)=0$
$\mathrm{r}^{4}=\frac{1}{4}, 4 \Rightarrow \mathrm{r}^{4}=4$
(an increasing geometric series)
$\mathrm{a}^{2} \mathrm{r}^{6}=25 \Rightarrow\left(\mathrm{ar}^{3}\right)^{2}=25$
$\mathrm{T}_{4}+\mathrm{T}_{6}+\mathrm{T}_{8}=\mathrm{ar}^{3}+\mathrm{ar}^{5}+\mathrm{ar}^{7}$

$$
\begin{aligned}
& =a^{3}\left(1+r^{2}+r^{4}\right) \\
& =5(1+2+4)=35
\end{aligned}
$$

5. The value of $\sum_{n=1}^{100} \int_{n-1}^{n} e^{x-[x]} d x$, where $[x]$ is the
greatest integer $\leq x$, is
(1) $100(\mathrm{e}-1)$
(2) $100(1-e)$
(3) 100 e
(4) $100(1+e)$

Official Ans. by NTA (1)
Sol. $\sum_{n=1}^{100} \int_{n-1}^{n} e^{\{x\}} d x$, period of $\{x\}=1$
$\sum_{n=1}^{100} \int_{0}^{1} e^{\{x\}} d x=\sum_{n=1}^{100} \int_{0}^{1} e^{x} d x$
$\sum_{n=1}^{100}(e-1)=100(e-1)$
6. In the circle given below, let $\mathrm{OA}=1$ unit, $\mathrm{OB}=13$ unit and $\mathrm{PQ} \perp \mathrm{OB}$. Then, the area of the triangle PQB (in square units) is

(1) $24 \sqrt{2}$
(2) $24 \sqrt{3}$
(3) $26 \sqrt{3}$
(4) $26 \sqrt{2}$

Official Ans. by NTA (2)
Sol. $\mathrm{PA}=\mathrm{AQ}=\lambda$
OA•AB
$=A P$. AQ
$\Rightarrow 1.12=\lambda . \lambda$
$\Rightarrow \lambda=2 \sqrt{3}$

Area $\triangle \mathrm{PQB}=\frac{1}{2} \times 2 \lambda \times \mathrm{AB}$
$\Delta=\frac{1}{2} \cdot 4 \sqrt{3} \times 12$
$=24 \sqrt{3}$
7. The sum of the infinite series $1+\frac{2}{3}+\frac{7}{3^{2}}+\frac{12}{3^{3}}+\frac{17}{3^{4}}+\frac{22}{3^{5}}+\ldots$ is equal to
(1) $\frac{13}{4}$
(2) $\frac{9}{4}$
(3) $\frac{15}{4}$
(4) $\frac{11}{4}$

Official Ans. by NTA (1)
Sol. $\quad \mathrm{S}=1+\frac{2}{3}+\frac{7}{3^{2}}+\frac{12}{3^{3}}+\frac{17}{3^{4}}+\ldots$
$\frac{S}{3}=\frac{1}{3}+\frac{2}{3^{2}}+\frac{7}{3^{3}}+\frac{12}{3^{4}}+\ldots$
$\frac{2 S}{3}=1+\frac{1}{3}+\frac{5}{3^{2}}+\frac{5}{3^{3}}+\frac{5}{3^{4}}+\ldots+$ up to infinite terms
$\Rightarrow \mathrm{S}=\frac{13}{4}$
8. The value of
$\lim _{h \rightarrow 0} 2\left\{\frac{\sqrt{3} \sin \left(\frac{\pi}{6}+h\right)-\cos \left(\frac{\pi}{6}+h\right)}{\sqrt{3} h(\sqrt{3} \cosh -\sinh)}\right\}$ is
(1) $\frac{4}{3}$
(2) $\frac{2}{\sqrt{3}}$
(3) $\frac{3}{4}$
(4) $\frac{2}{3}$

Official Ans. by NTA (1)
Sol. $L=\lim _{h \rightarrow 0} 2\left(\frac{\sqrt{3}\left(\frac{1}{2} \cosh +\frac{\sqrt{3}}{2} \sinh \right)-\left(\frac{\sqrt{3}}{2} \cosh -\frac{\sinh }{2}\right)}{(\sqrt{3} h)(\sqrt{3})}\right)$
$L=\lim _{h \rightarrow 0} \frac{4 \sinh }{3 h}$
$\Rightarrow \mathrm{L}=\frac{4}{3}$
9. The maximum value of the term independent of
't' in the expansion of $\left(t x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{10}$ where $\mathrm{x} \in(0,1)$ is
(1) $\frac{10!}{\sqrt{3}(5!)^{2}}$
(2) $\frac{2.10!}{3 \sqrt{3}(5!)^{2}}$
(3) $\frac{2.10!}{3(5!)^{2}}$
(4) $\frac{10!}{3(5!)^{2}}$

Official Ans. by NTA (2)
Sol. Term independent of t will be the middle term due to exect same magnitude but opposite sign powers of t in the binomial expression given
so $\mathrm{T}_{6}={ }^{10} \mathrm{C}_{5}\left(\mathrm{tx}^{2} 5\right)^{5}\left(\frac{(1-\mathrm{x})^{\frac{1}{10}}}{\mathrm{t}}\right)^{5}$
$\mathrm{T}_{6}=f(\mathrm{x})={ }^{10} \mathrm{C}_{5}(\mathrm{x} \sqrt{1-\mathrm{x}}) ;$ for maximum
$f^{\prime}(\mathrm{x})=0 \Rightarrow \mathrm{x}=\frac{2}{3} \& f^{\prime \prime}\left(\frac{2}{3}\right)<0$
so $f(\mathrm{x})_{\max .}={ }^{10} \mathrm{C}_{5}\left(\frac{2}{3}\right) \cdot \frac{1}{\sqrt{3}}$
10. The rate of growth of bacteria in a culture is proportional to the number of bacteris present and the bacteria count is 1000 at initial time $t=0$. The number of bacteria is increased by 20% in 2 hours. If the population of bacteria is 2000 after
$\frac{\mathrm{k}}{\log _{\mathrm{e}}\left(\frac{6}{5}\right)}$ hours, then $\left(\frac{\mathrm{k}}{\log _{\mathrm{e}} 2}\right)^{2}$ is equal to
(1) 4
(2) 8
(3) 2
(4) 16

Official Ans. by NTA (1)
Sol. $\frac{\mathrm{dB}}{\mathrm{dt}}=\lambda \mathrm{B} \Rightarrow \int_{1000}^{1200} \frac{\mathrm{~dB}}{\mathrm{~B}}=\lambda \int_{0}^{2} \mathrm{dt} \Rightarrow \lambda=\frac{1}{2} \ln \left(\frac{6}{5}\right)$
$\int_{1000}^{2000} \frac{\mathrm{~dB}}{\mathrm{~B}}=\frac{1}{2} \ln \left(\frac{6}{5}\right) \int_{0}^{\mathrm{T}} \mathrm{dt} \Rightarrow \mathrm{T}=\frac{2 \ln 2}{\ln \left(\frac{6}{5}\right)}$
$\Rightarrow \mathrm{k}=2 \ell \mathrm{n} 2$
11. If $(1,5,35),(7,5,5),(1, \lambda, 7)$ and $(2 \lambda, 1,2)$ are coplanar, then the sum of all possible values of λ is
(1) $\frac{39}{5}$
(2) $-\frac{39}{5}$
(3) $\frac{44}{5}$
(4) $-\frac{44}{5}$

Official Ans. by NTA (3)
Sol. $\mathrm{A}(1,5,35), \mathrm{B}(7,5,5), \mathrm{C}(1, \lambda, 7), \mathrm{D}(2 \lambda, 1,2)$
$\overline{\mathrm{AB}}=6 \hat{\mathrm{i}}-30 \hat{\mathrm{k}}, \overline{\mathrm{BC}}=-6 \hat{\mathrm{i}}(\lambda-5) \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$,
$\overrightarrow{\mathrm{CD}}=(2 \lambda-1) \hat{\mathrm{i}}+(1-\lambda) \hat{\mathrm{j}}-5 \hat{\mathrm{k}}$
Points are coplanar
$\Rightarrow 0=\left|\begin{array}{ccc}6 & 0 & -30 \\ -6 & \lambda-5 & 2 \\ 2 \lambda-1 & 1-\lambda & -5\end{array}\right|$
$=6(-5 \lambda+25-2+2 \lambda)$
$-30\left(-6+6 \lambda-\left(2 \lambda^{2}-\lambda-10 \lambda+5\right)\right)$
$=6(-3 \lambda+23)-30\left(-2 \lambda^{2}+11 \lambda-5-6+6 \lambda\right)$
$=6(-3 \lambda+23)-30\left(-2 \lambda^{2}+17 \lambda-11\right)$
$=6\left(-3 \lambda+23+10 \lambda^{2}-85 \lambda+55\right)$
$=6\left(10 \lambda^{2}-88 \lambda+78\right)=12\left(5 \lambda^{2}-44 \lambda+39\right)$
$\Rightarrow 0=12\left(5 \lambda^{2}-44 \lambda+39\right)$
$\lambda_{1}+\lambda_{2}=\frac{44}{5}$
12. If $\frac{\sin ^{-1} x}{a}=\frac{\cos ^{-1} x}{b}=\frac{\tan ^{-1} y}{c} ; 0<x<1$, then the value of $\cos \left(\frac{\pi c}{a+b}\right)$ is
(1) $\frac{1-y^{2}}{y \sqrt{y}}$
(2) $1-y^{2}$
(3) $\frac{1-y^{2}}{1+y^{2}}$
(4) $\frac{1-y^{2}}{2 y}$

Official Ans. by NTA (3)
Sol. $\frac{\sin ^{-1} x}{\mathrm{r}}=\mathrm{a}, \frac{\cos ^{-1} \mathrm{x}}{\mathrm{r}}=\mathrm{b}, \frac{\tan ^{-1} \mathrm{y}}{\mathrm{r}}=\mathrm{c}$

So, $a+b=\frac{\pi}{2 r}$
$\cos \left(\frac{\pi \mathrm{c}}{\mathrm{a}+\mathrm{b}}\right)=\cos \left(\frac{\pi \tan ^{-1} \mathrm{y}}{\frac{\pi}{2 r} \mathrm{r}}\right)$
$=\cos \left(2 \tan ^{-1} y\right)$, let $\tan ^{-1} y=\theta$
$=\cos (2 \theta)$
$=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1-y^{2}}{1+y^{2}}$
13. The number of seven digit integers with sum of the digits equal to 10 and formed by using the digits 1,2 and 3 only is
(1) 42
(2) 82
(3) 77
(4) 35

Official Ans. by NTA (3)
Sol. (I) First possiblity is 1, 1, 1, 1, 1, 2, 3

$$
\text { required number }=\frac{7!}{5!}=7 \times 6=42
$$

(II) Second possiblity is $1,1,1,1,2,2,2$

$$
\text { required number }=\frac{7!}{4!3!}=\frac{7 \times 6 \times 5}{6}=35
$$

$$
\text { Total }=42+35=77
$$

14. Let f be any function defined on R and let it satisfy the condition :
$|f(\mathrm{x})-f(\mathrm{y})| \leq\left|(\mathrm{x}-\mathrm{y})^{2}\right|, \forall(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$
If $f(0)=1$, then :
(1) $f(x)$ can take any value in R
(2) $f(\mathrm{x})<0, \forall \mathrm{x} \in \mathrm{R}$
(3) $f(\mathrm{x})=0, \forall \mathrm{x} \in \mathrm{R}$
(4) $f(x)>0, \forall x \in R$

Official Ans. by NTA (4)
Sol. $\left|\frac{f(\mathrm{x})-f(\mathrm{y})}{(\mathrm{x}-\mathrm{y})}\right| \leq|(\mathrm{x}-\mathrm{y})|$
$x-y=h$ let $\Rightarrow x=y+h$
$\lim _{x \rightarrow 0}\left|\frac{f(\mathrm{y}+\mathrm{h})-f(\mathrm{y})}{\mathrm{h}}\right| \leq 0$
$\Rightarrow\left|f^{\prime}(\mathrm{y})\right| \leq 0 \Rightarrow f^{\prime}(\mathrm{y})=0$
$\Rightarrow f(\mathrm{y})=\mathrm{k}$ (constant)
and $f(0)=1$ given
So, $f(\mathrm{y})=1 \Rightarrow f(\mathrm{x})=1$
15. The maximum slope of the curve $y=\frac{1}{2} x^{4}-5 x^{3}+18 x^{2}-19 x$ occurs at the point
(1) $(2,2)$
(2) $(0,0)$
(3) $(2,9)$
(4) $\left(3, \frac{21}{2}\right)$

Official Ans. by NTA (1)
Sol. $\frac{d y}{d x}=2 x^{3}-15 x^{2}+36 x-19$
Since, slope is maximum so,
$\frac{d^{2} y}{d x^{2}}=6 x^{2}-30 x+36=0$
$\Rightarrow x^{2}-5 x+6=0 \quad \frac{d^{3} y}{d x^{3}}=12 x-30$
$x=2,3$
at $\mathrm{x}=2, \frac{\mathrm{~d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}<0$
So, maxima
at $x=2$
$y=\frac{1}{2} \times 16-5 \times 8+18 \times 4-19 \times 2$
$=8-40+72-38=80-78=2$
point $(2,2)$
16. The intersection of three lines
$x-y=0, x+2 y=3$ and $2 x+y=6$ is a
(1) Right angled triangle
(2) Equilateral triangle
(3) Isosceles triangle
(4) None of the above

Official Ans. by NTA (3)

Sol.

$L_{1}: x-y=0$
$L_{2}: x+2 y=3$
$L_{3}: x+y=6$
on solving L_{1} and L_{2} :
$\mathrm{y}=\mathrm{L}$ and $\mathrm{x}=1$
L_{1} and L_{3} :
$\mathrm{x}=2$
$y=2$
L_{2} and L_{3} :
$x+y=3$
$2 x+y=6$
$\mathrm{x}=3$
$y=0$
$\mathrm{AC}=\sqrt{4+1}=\sqrt{5}$
$\mathrm{BC}=\sqrt{4+1}=\sqrt{5}$
$\mathrm{AB}=\sqrt{1+1}=\sqrt{2}$
so its an isosceles triangle
17. Consider the three planes
$P_{1}: 3 x+15 y+21 z=9$,
$P_{2}: x-3 y-z=5$, and
$P_{3}: 2 x+10 y+14 z=5$
Then, which one of the following is true?
(1) P_{1} and P_{2} are parallel
(2) P_{1} and P_{3} are parallel
(3) P_{2} and P_{3} are parallel
(4) P_{1}, P_{2} and P_{3} all are parallel

Official Ans. by NTA (2)
Sol. $P_{1}: x+5 y+7 z=3$,
$P_{2}: x-3 y-z=5$
$P_{3}: x+5 y+7 z=\frac{5}{2}$
so P_{1} and P_{3} are parallel.
18. The value of $\left|\begin{array}{lll}(a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1\end{array}\right|$ is
(1) $(a+2)(a+3)(a+4)$
(2) -2
(3) $(a+1)(a+2)(a+3)$
(4) 0

Official Ans. by NTA (2)

Sol. $\quad \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$\Delta=\left|\begin{array}{ccc}(a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3-a-1) & 1 & 0 \\ a^{2}+7 a+12-a^{2}-3 a-2 & 2 & 0\end{array}\right|$
$=\left|\begin{array}{ccc}a^{2}+3 a+2 & a+2 & 1 \\ 2(a+2) & 1 & 0 \\ 4 a+10 & 2 & 0\end{array}\right|$
$=4(a+2)-4 a-10$
$=4 a+8-4 a-10=-2$
19. The value of $\int_{-\pi / 2}^{\pi / 2} \frac{\cos ^{2} x}{1+3^{x}} d x$ is
(1) $\frac{\pi}{4}$
(2) 4π
(3) $\frac{\pi}{2}$
(4) 2π

Official Ans. by NTA (1)
Sol. $I=\int_{-\pi / 2}^{\pi / 2} \frac{\cos ^{2} x}{1+3^{x}} d x$ (using king)
$\mathrm{I}=\int_{-\pi / 2}^{\pi / 2} \frac{\cos ^{2} \mathrm{x}}{1+3^{-x}} d x=\int_{-\pi / 2}^{\pi / 2} \frac{3^{x} \cos ^{2} x}{1+3^{x}} d x$
$2 I=\int_{-\pi / 2}^{\pi / 2} \frac{\left(1+3^{x}\right) \cos ^{2} x}{1+3^{x}} d x$
$=\int_{-\pi / 2}^{\pi / 2} \cos ^{2} x d x=2 \int_{0}^{\pi / 2} \cos ^{2} x d x$
$\Rightarrow I=\int_{0}^{\pi / 2} \cos ^{2} x d x=\frac{\pi}{4}$
20. Let $R=\{(P, Q) \mid P$ and Q are at the same distance from the origin $\}$ be a relation, then the equivalence class of $(1,-1)$ is the set :
(1) $S=\left\{(x, y) \mid x^{2}+y^{2}=4\right\}$
(2) $S=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$
(3) $S=\left\{(x, y) \mid x^{2}+y^{2}=\sqrt{2}\right\}$
(4) $S=\left\{(x, y) \mid x^{2}+y^{2}=2\right\}$

Official Ans. by NTA (4)

Sol. Equivalence class of $(1,-1)$ is a circle with centre at $(0,0)$ and radius $=\sqrt{2}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=2$
$S=\left\{(x, y) \mid x^{2}+y^{2}=2\right\}$

SECTION-B

1. The difference between degree and order of a differential equation that represents the family of curves given by $y^{2}=a\left(x+\frac{\sqrt{a}}{2}\right), a>0$ is

Official Ans. by NTA (2)
Sol. $y^{2}=a\left(x+\frac{\sqrt{\mathrm{a}}}{2}\right)=a x+\frac{\mathrm{a}^{3 / 2}}{2}$
$\Rightarrow 2 y^{\prime}=\mathrm{a}$
put in equation (1)
$y^{2}=\left(2 y y^{\prime}\right) x+\frac{\left(2 y y^{\prime}\right)^{3 / 2}}{2}$
$\left(y^{2}-2 x y y^{\prime}\right)=\frac{\left(2 y y^{\prime}\right)^{3 / 2}}{2}$
squaring
$\left(y^{2}-2 x y y^{\prime}\right)^{2}=\frac{y^{3}\left(y^{\prime}\right)^{3}}{2}$
\therefore order $=1$
degree $=3$
Degree - order $=3-1=2$
2. The number of integral values of ' k ' for which the equation $3 \sin x+4 \cos x=k+1$ has a solution, k $\in \mathrm{R}$ is
Official Ans. by NTA (11)
Sol. $3 \sin x+4 \cos x=k+1$
$\Rightarrow \mathrm{k}+1 \in\left[-\sqrt{3^{2}+4^{2}}, \sqrt{3^{2}+4^{2}}\right]$
$\Rightarrow \mathrm{k}+1 \in[-5,5]$
$\Rightarrow \mathrm{k} \in[-6,4]$
No. of integral values of $\mathrm{k}=11$
3. The number of solutions of the equation
$\log _{4}(x-1)=\log _{2}(x-3)$ is
Official Ans. by NTA (1)
Sol. $\log _{4}(x-1)=\log _{2}(x-3)$
$\Rightarrow \frac{1}{2} \log _{2}(\mathrm{x}-1)=\log _{2}(\mathrm{x}-3)$
$\Rightarrow \log _{2}(\mathrm{x}-1)^{1 / 2}=\log _{2}(\mathrm{x}-3)$
$\Rightarrow(\mathrm{x}-1)^{1 / 2}=\mathrm{x}-3$
$\Rightarrow \mathrm{x}-1=\mathrm{x}^{2}+9-6 \mathrm{x}$
$\Rightarrow \mathrm{x}^{2}-7 \mathrm{x}+10=0$
$\Rightarrow(\mathrm{x}-2)(\mathrm{x}-5)=0$
$\Rightarrow \mathrm{x}=2,5$
But $x \neq 2$ because it is not satisfying the domain of given equation i.e $\log _{2}(x-3) \rightarrow$ its domain x >3
finally x is 5
\therefore No. of solutions $=1$.
4. The sum of $162^{\text {th }}$ power of the roots of the equation $\mathrm{x}^{3}-2 \mathrm{x}^{2}+2 \mathrm{x}-1=0$ is

Official Ans. by NTA (3)
Sol. $x^{3}-2 x^{2}+2 x-1=0$
$x=1$ satisfying the equation
$\therefore \mathrm{x}-1$ is factor of
$x^{3}-2 x^{2}+2 x-1$
$=(\mathrm{x}-1)\left(\mathrm{x}^{2}-\mathrm{x}+1\right)=0$
$\mathrm{x}=1, \frac{1+\mathrm{i} \sqrt{3}}{2}, \frac{1-\mathrm{i} \sqrt{3}}{2}$
$\mathrm{x}=1,-\omega^{2},-\omega$
sum of $162^{\text {th }}$ power of roots
$=(1)^{162}+\left(-\omega^{2}\right)^{162}+(-\omega)^{162}$
$=1+(\omega)^{324}+(\omega)^{162}$
$=1+1+1=3$
5. Let $\mathrm{m}, \mathrm{n} \in \mathrm{N}$ and $\operatorname{gcd}(2, \mathrm{n})=1$. If
$30\binom{30}{0}+29\binom{30}{1}+\ldots+2\binom{30}{28}+1\binom{30}{29}=\mathrm{n} .2^{\mathrm{m}}$,
then $n+m$ is equal to
(Here $\binom{\mathrm{n}}{\mathrm{k}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}}$)
Official Ans. by NTA (45)
Sol. $30\left({ }^{30} \mathrm{C}_{0}\right)+29\left({ }^{30} \mathrm{C}_{1}\right)+\ldots+2\left({ }^{30} \mathrm{C}_{28}\right)+1\left({ }^{30} \mathrm{C}_{29}\right)$
$=30\left({ }^{30} \mathrm{C}_{30}\right)+29\left({ }^{30} \mathrm{C}_{29}\right)+\ldots . .+2\left({ }^{30} \mathrm{C}_{2}\right)+1\left({ }^{30} \mathrm{C}_{1}\right)$
$=\sum_{\mathrm{r}=1}^{30} \mathrm{r}\left({ }^{30} \mathrm{C}_{\mathrm{r}}\right)$
$=\sum_{\mathrm{r}=1}^{30} \mathrm{r}\left(\frac{30}{\mathrm{r}}\right)\left({ }^{29} \mathrm{C}_{\mathrm{r}-1}\right)$
$=30 \sum_{\mathrm{r}=1}^{30}{ }^{29} \mathrm{C}_{\mathrm{r}-1}$
$=30\left({ }^{29} \mathrm{C}_{0}+{ }^{29} \mathrm{C}_{1}+{ }^{29} \mathrm{C}_{2}+\ldots+{ }^{29} \mathrm{C}_{29}\right)$
$=30\left(2^{29}\right)=15(2)^{30}=n(2)^{\mathrm{m}}$
$\therefore \mathrm{n}=15, \mathrm{~m}=30$
$n+m=45$
6. If $y=y(x)$ is the solution of the equaiton
$e^{\sin y} \cos y \frac{d y}{d x}+e^{\sin y} \cos x=\cos x, y(0)=0 ;$
then $1+y\left(\frac{\pi}{6}\right)+\frac{\sqrt{3}}{2} y\left(\frac{\pi}{3}\right)+\frac{1}{\sqrt{2}} y\left(\frac{\pi}{4}\right) \quad$ is
equal to
Official Ans. by NTA (1)
Sol. Put $\mathrm{e}^{\text {siny }}=\mathrm{t}$
$\Rightarrow e^{\sin y} \cos y \frac{d y}{d x}=\frac{d t}{d x}$
\Rightarrow D.E is $\frac{d t}{d x}+t \cos x=\cos x$
I.F. $=e^{\int \cos x d x}=e^{\sin x}$
\Rightarrow solution is $\mathrm{t} . \mathrm{e}^{\sin \mathrm{x}}=\int \cos \mathrm{xe} \mathrm{e}^{\sin x}$
$\Rightarrow e^{\sin y} e^{\sin x}=e^{\sin x}+c$
$\because x=0, y=0 \Rightarrow c=0$
$\Rightarrow e^{\sin y}=1$
$\Rightarrow \mathrm{y}=0$
$\Rightarrow 1+y\left(\frac{\pi}{6}\right)+\frac{\sqrt{3}}{2} y\left(\frac{\pi}{3}\right)+\frac{1}{\sqrt{2}} y\left(\frac{\pi}{4}\right)=1$
7. Let $(\lambda, 2,1)$ be a point on the plane which passes through the ponit $(4,-2,2)$. If the plane is perpendicular to the line joining the points
$(-2,-21,29)$ and $(-1,-16,23)$, then $\left(\frac{\lambda}{11}\right)^{2}-\frac{4 \lambda}{11}-4$ is equal to

Official Ans. by NTA (8)

$$
\begin{aligned}
& \mathrm{A}(-2,-21,29) \\
& \mathrm{B}(-1,-16,33)
\end{aligned}
$$

Sol.

$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{PQ}}=0$
$\Rightarrow(\hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}) \cdot((4-\lambda) \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+\hat{\mathrm{k}})=0$
$\Rightarrow 4-\lambda-20-6=0$
$\Rightarrow \lambda=-22$
$\Rightarrow\left(\frac{\lambda}{11}\right)^{2}-\frac{4 \lambda}{11}-4=4+8-4=8$
8. The area bounded by the lines $y=\| x-1|-2|$ is

Official Ans. by NTA (8)
Ans. By ALLEN (BONUS)

Sol. Remark :

Question is incomplete it should be area bounded by $\mathrm{y}=|\mathrm{x}-1|-2 \mid$ and $\mathrm{y}=2$

Area $=2\left(\frac{1}{2} .4 .2\right)$
9. The value of the integral $\int_{0}^{\pi}|\sin 2 x| d x$ is Official Ans. by NTA (2)
Sol. Put $2 \mathrm{x}=\mathrm{t} \Rightarrow 2 \mathrm{dx}=\mathrm{dt}$

$$
\begin{aligned}
& \Rightarrow \mathrm{I}=\frac{1}{2} \int_{0}^{2 \pi}|\sin \mathrm{t}| \mathrm{dt} \\
& =\int_{0}^{\pi}|\sin \mathrm{t}| \mathrm{dt} \\
& =2
\end{aligned}
$$

10. If $\sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1$, the number of solutions of the given equation when

$$
x \in\left[0, \frac{\pi}{2}\right] \text { is }
$$

Official Ans. by NTA (1)
Sol. $\sqrt{3}(\cos x)^{2}-\sqrt{3} \cos x+\cos x-1=0$
$\Rightarrow(\sqrt{3} \cos x+1)(\cos x-1)=0$
$\Rightarrow \cos x=1$ or $\cos x=-\frac{1}{\sqrt{3}}$ (reject)
$\Rightarrow \mathrm{x}=0$ only

