

Total No. of Questions - 24
Total No. of Printed Pages - 3

Regd.			_			
No.						

ha.n'

Part - III

MATHEMATICS, Paper - II (B)

(Co-ordinate Geometry and Calculus) (English Version)

Time: 3 Hours

Max. Marks: 75

Note: This question paper consists of three sections A, B and C.

SECTION A

I. Very short answer type questions.

 $10\times2=20$

- i) Answer all questions.
- ii) Each question carries two marks.
- Obtain the parametric equation of the circle $(x-3)^2 + (y-4)^2 = 8^2$.
- If (2, 3, 5) is one end of a diameter of the sphere $x^2 + y^2 + z^2 6x 12y 2z + 20 = 0$, then find the coordinates of the other end of the diameter.
- Find the points on the parabola $y^2 = 8x$ whose focal distance is 10.
 - If e, e_1 are the eccentricities of a hyperbola and its conjugate hyperbola, prove that $\frac{1}{e^2} + \frac{1}{e_1^2} = 1$.
- \mathfrak{H} Find the 3rd derivative of $e^x Cos x$.
- 6. Evaluate $\int \frac{Sin^4x}{Cos^6x} dx$.

7. Evaluate:
$$\int \frac{1}{x \log x \left[\log \left(\log x \right) \right]} dx$$
.

Evaluate:
$$\int_{0}^{1} \frac{x^3}{x^2 + 1} dx$$
.

9 Find the area of the region enclosed by the curves
$$x = 4 - y^2$$
, $x = 0$.

16. Form the differential equation of the family of all circles with their centers at the origin and also find its order.

SECTION B

II. Short answer type questions.

 $5 \times 4 = 20$

- i) Attempt any five questions.
- ii) Each question carries four marks.
- 11. Find the equation of the circle with center (-2, 3) cutting a chord length 2 units on 3x + 4y + 4 = 0.
- 12. If the polar of P with respect to the parabola $y^2 = 4ax$ touches the circle $x^2 + y^2 = 4a^2$, then show that P lies on the curve $x^2 y^2 = 4a^2$.
- 13. Find the equations of the tangents to the hyperbola $x^2 4y^2 = 4$ which are i) parallel to and ii) perpendicular to the line x + 2y = 0
- 14. Find the area of the triangle formed by the points with polar coordinates $(a,\theta), (2a,\theta + \frac{\pi}{3}), (3a,\theta + \frac{2\pi}{3})$.

15. Evaluate:
$$\int \frac{dx}{5+4\cos 2x}$$
.

16. Solve:
$$x dy = \left(y + x \cos^2\left(\frac{y}{x}\right)\right) dx$$
.

17. Solve:
$$\frac{dy}{dx}(x^2y^3 + xy) = 1$$
.

SECTION C

III. Long answer type questions.

 $5 \times 7 = 35$

- i) Attempt any five questions.
- ii) Each question carries seven marks.
- Show that the circles $x^2+y^2-6x-2y+1=0$, $x^2+y^2+2x-8y+13=0$ touch each other. Find the point of contact and the equation of the common tangent at their point of contact.
- Find the equation of the circle which passes through the origin and belongs to the coaxial system of which the limiting points are (1, 2) and (4, 3).
- Find the length of the major axis, minor axis, latus rectum, eccentricity, coordinates of center, foci and the equation of directrices of the ellipse $4x^2 + y^2 8x + 2y + 1 = 0$.
- 21. If $y = e^{mSin^{-1}x}$, then prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + m^2)y_n = 0$
- 22. Evaluate: $\int \frac{2Sin x + 3Cos x + 4}{3Sin x + 4Cos x + 5} dx.$
- 22. Evaluate: $\int_{0}^{\pi} \frac{xSin^{3} x}{1 + Cos^{2} x} dx.$
- 24. A curve is drawn to pass through the points given by the following table.

· x	1	1.5	2	2.5	3	3.5	4
у	2	2.4	2,7	2.8	3	2.6	2.1

Using Simpson's rule, and the approximate area bounded by the curve, the X-axis and the lines x = 1 and x = 4.