266 (N)

(NEW SYLLABUS)

Total	No.	of	Ques	tio	ıs:	24	
Total	No.	of	Prin	ted	Pag	zes	: 4

4.0		7/26		/
Regd.			(V)	
No.				

Part-III

MATHEMATICS, Paper - II(A)

(English version)

Time: 3 Hours]

[Max. Marks: 75

Note: This question paper contains three Sections A, B and C.

SECTION - A

 $10 \times 2 = 20$

- Very short answer type questions.
 - (i) Answer all the questions.
 - (ii) Each question carries two marks.
 - 1. Find the square roots of 7 + 24i.
 - 2. Express the complex number $1+i\sqrt{3}$ in modulus amplitude form.
 - 3. If $x = \operatorname{cis} \theta$, then find the value of $\left(x^6 + \frac{1}{x^6}\right)$.
 - 4. Find the maximum value of the quadratic expression $2x 7 5x^2$.
 - 5. If -1, 2 and α are the roots of $2x^3 + x^2 7x 6 = 0$, then find ' α '.

- 6. If ${}^{n}P_{4} = 1680$, then find 'n'.
- 7. If ${}^{15}C_{2r-1} = {}^{15}C_{2r+4}$, then find 'r'.

- 8. Find the number of terms in the expansion of $(2x + 3y + z)^7$.
- 9. Find the mean deviation from the mean of following discrete data 6, 7, 10, 12, 13, 4, 12, 16.
- 10. A Poisson variable satisfies P(X=1) = P(X=2). Find P(X=5).

SECTION-B

 $5 \times 4 = 20$

- II. Short answer type questions.
 - (i) Answer ANY FIVE questions.
 - (ii) Each question carries four marks.
 - 11. If z = x + iy and if the point P in the Argand plane represents z. Find the locus of z satisfying the equation |z-3+i|=4.
 - 12. If x is real, prove that $\frac{x}{x^2-5x+9}$ lies between $-\frac{1}{11}$ and 1.
 - 13. If the letters of the word PRISON are permuted in all possible ways and the words formed are arranged in dictionary order, find the rank of the word PRISON.
 - 14. Find the number of ways of selecting 11members cricket team from 7 batsmen, 6 bowlers and 2 wicket-keepers, so that the team contains 2 wicket-keepers and atleast 4 bowlers.

- 15. Resolve $\frac{x+4}{(x^2-4)(x+1)}$ into partial fractions.
- 16. A, B, C are three horses in a race. The probability of A to win the race is twice that of B and probability of B is twice that of C. What are the probabilities of A, B and C to win the race?
- 17. If A and B are independent events with P(A) = 0.6, P(B) = 0.7, then compute (i) $P(A \cap B)$, (ii) $P(A \cup B)$,

(iii)
$$P\left(\frac{B}{A}\right)$$
, (iv) $P(A^c \cap B^c)$

SECTION-C

 $5 \times 7 = 35$

- III. Long answer type questions.
 - (i) Attempt ANY FIVE questions.
 - (ii) Each question carries seven marks.
 - 18. If α , β are roots of the equation $x^2 2x + 4 = 0$; then for any $n \in \mathbb{N}$, show that $\alpha^n + \beta^n = 2^{n+1} \cos\left(\frac{n\pi}{3}\right)$.
 - 19. Solve $4x^3 24x^2 + 23x + 18 = 0$ given that the roots of the equation are in Arithmetic Progression.
 - 20. In 'n' is a positive integer and 'x' is any non-zero real number, then prove that $C_0 + C_1 \cdot \frac{x}{2} + C_2 \cdot \frac{x^2}{3} + C_3 \cdot \frac{x^3}{4} + \dots + C_n \cdot \frac{x^n}{n+1} = \frac{(1+x)^{n+1}-1}{(n+1)x}$.
 - 21. If $x = \frac{1}{5} + \frac{1 \cdot 3}{5 \cdot 10} + \frac{1 \cdot 3 \cdot 5}{5 \cdot 10 \cdot 15} + \dots \infty$, then prove that $3x^2 + 6x = 2$.

22. Calculate the variance and standard deviation of the following continuous Frequency distribution.

Class	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	3	7	12	15	8	3	2

- 23. State and prove Addition theorem on Probability.
- 24. The probability distribution of a random variable X is given below.

$X = x_i$	1	2	3/	4	5 '
$P(X = x_i)$	k	2k	3k	4k	5k

Find the value of 'k' and the mean and variance of 'X'.