16E(A)

MATHEMATICS, Paper - II

(English version)

Parts A and B

Time: 2½ Hours]

[Maximum Marks: 50]

Instructions:

1. Answer the questions under **Part-A** on a separate answer book.

2. Write the answers to the questions under **Part-B** on the question paper itself and attach it to the answer book of **Part-A**.

Part - A

Time: 2 Hours

Marks: 35

SECTION - I

 $(Marks: 5\times 2=10)$

NOTE: the restance to an of the beautiful and by 50 se

1. Answer ANY FIVE questions, choosing at least TWO from each of the following Groups, i.e., A and B.

2. Each question carries 2 marks.

GROUP - A

(Geometry, Analytical Geometry, Statistics)

1. If ABCD is a Rhombus, then prove that

$$AB^2 + BC^2 + CD^2 + AD^2 = AC^2 + BD^2$$
.

- **2.** Show that the points A(1, 2), B(-3, 4) and C(7, -1) are collinear.
- 3. Find the area of triangle formed by the line 2x 4y + 7 = 0 with the co-ordinate axis.
- 4. Write the de-merits and merits of A.M.

GROUP - B

(Trigonometry, Matrices, Computing)

- 5. If $8 \tan A = 15$, then find $\sin A \cos A$.
- 6. If $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$, then find 2A 3B.
- 7. What are the different boxes used in a Flow Chart?
- 8. What are the essential parts of a Computer?

SECTION - II

 $(Marks\ 4\times1=4)$

NOTE:-

- 1. Answer ANY FOUR of the following SIX questions.
- 2. Each question carries 1 mark.
- 9. State the converse of Pythagorean Theorem.
- 10. Find the slope of the line perpendicular to the line 5x 2y + 4 = 0.
- 11. Express $\tan \theta$ in terms of $\sec \theta$.
- **12.** Find the Arithmetic mean of first "n" numbers.
- 13. Expand C.P.U.
- 14. If $A = \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, then find AB.

16E(A)

SECTION - III

NOTE:-

- 1. Answer **ANY FOUR** of the following questions, choosing at least **TWO** from each groups i.e., Group **A** and **B**.
- 2. Each question carries 4 marks.

GROUP - A

(Geometry, Analytical Geometry, Statistics)

- 15. State and prove Alternate Segment Theorem.
- 16. Find the area of triangle enclosed between the co-ordinate axis and line passing through (8, -3) and (-4, 12).
- 17. Find the co-ordinates of the points of trisection of a segment joining A(-3, 2) and B(9, 5).
- 18. Find the median of marks scored by 50 students in a 50 marks test.

Marks	1-10	11-20	21-30	31-40	41-50
No. of students	3	12	16	14	5

GROUP - B

(Trigonometry, Matrices and Computing)

19. Prove that
$$\frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1} = \frac{1 + \sin\theta}{\cos\theta}.$$

20. If
$$A = \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & m \\ 0 & -\frac{1}{2} \end{bmatrix}$ and $AB = BA$, then find value of m .

- 21. Solve the equation 3y = 4 2x and $x = \frac{y+1}{4}$ by using Cramer's method.
- **22.** Draw the Flow Chart for solving $ax^2 + bx + c = 0$ by considering all possible cases.

SECTION-IV

NOTE:-

 $(Marks\ 1\times5=5)$

- 1. Answer ANY ONE of the following questions.
- 2. The question carries 5 marks.
- 23. Construct a triangle ABC, in which AB = 4.4 cm, $\angle C = 65^{\circ}$ and median through C is 2.7 cm.
- 24. Two boys are on opposite of sides of a tower, which is 100 metres tall. They measure the angle of elevation of top of the tower as 30° and 45° respectively. Find the distance through which the boys are separated.

16E(B)

MATHEMATICS, Paper - II

(English version)

Parts A and B

Time: 2½ Hours! [Maximum Marks: 50] Part - B Time: 30 minutes Marks: 15 NOTE:-1. Answer **all** the questions. 2. Each question carries ½ mark. Answers are to be written in the question paper only. Marks will not be awarded in case of any over-writing and rewriting or erased answers. I. Write the CAPITAL LETTER showing the correct answer for the following questions in the brackets provided against them. $10 \times \frac{1}{2} = 5$ If in $\triangle ABC$, $AB^2 + BC^2 = AC^2$, then $\angle B = \dots$ 1. [.....] (A) 30° (B) 60° (C) 90° (D) 120° [.....] 2. The line y = mx + c intersect the X-axis at the point (A) (0, c)(B) (c, 0)(C) $\left(\frac{-c}{m}, 0\right)$

(D) $\left(0, \frac{-c}{m}\right)$

3. The line parallel to Y-axis through (h, k) is

[.....]

(A) x = h

(B) x = k

(C) y = h

- (D) v = k
- 4. If Mean=12.5 and Median = 12, then Mode = [.....]
 - (A) 13.5

(B) 11

(C) 11.5

- (D) 10.5
- **5.** The range of the first "n" natural numbers is [......]
 - (A)

(B)

(C) n + 1

- (D) n-1
- If $\cos \theta = \frac{12}{13}$, then $\sin (90^{\circ} + \theta) = \dots$ 6. [.....]
 - (A) $\frac{-12}{13}$ (B) $\frac{12}{13}$

(C) $\frac{5}{13}$

- (D) $\frac{-5}{13}$
- 7. If $\begin{bmatrix} 3 & 0 \\ 0 & P \end{bmatrix}$ is scalar matrix, then $P = \dots$ [.....]
 - (A) 0

(B) 1

(C) - 3

- (D) 3
- $\cos\theta$ $\sin\theta$ $-\sin\theta$ $\cos\theta$ The value of the determinant 8. [.....]
 - (A) 0

(B) 1

(C) $\sqrt{2}$

(D) - 1

- 9. Vacuum tubes were used in generation computers. [.....]
 - (A) I

(B) II

(C) III

- (D) IV
- 10. is used as processing operation box in a Flow Chart. [......]
 - (A) Rectangle

(B) Circle

(C) Ellipse

- (D) Rhombus
- II. Fill in the blanks with suitable answers.

11. 'O' is the centre of the circle. If $\angle ABC = 50^{\circ}$, then $\angle AOC = \dots$

- 12. If two circles having the radii 3 cm and 5 cm touch each other internally, then the distance between their centres is (in cms)......
- 13. The slope of the line joining the points (4,-1) and (5,6) is
- 14. If 1-8, 9-16, 17-24, are the classes of a frequency distribution, then the class interval is
- 15. For grouped data, formulae for Mode =
- **16.** $\sin^2 45^\circ + \cos^2 45^\circ = \dots$
- 17. $120^{\circ} = \dots$ radians.
- **18.** If $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, then $A^{-1} = \dots$
- **19.** Expand A.L.U. =
- 20. Example for Input device in Computers is
- 16E(B)

III. Find the correct answer for the questions given under **Group-A** selecting them from **Group-B** and write the indicating letter in the brackets provided against each question. $10 \times \frac{1}{2} = 5$

<i>(i)</i>	Group -	A
` /		

Group - B

- 21. The number of common [......] tangents for two externally
- (A) 1 (B) 2

touching circles is

- (C) 3
- **22.** In $\triangle ABC$, if $\angle B = 90^{\circ}$, [.....]
- (D) 4

AB = 3, AC = 5, then BC =

- (E) 5
- **23.** If mid point of (1, 4), (3, 6) is (K, 5), then $K = \dots$
- (F) 6
- **24.** Slope of the line x y + 7 = 0 is [.....]
- (G) 7
- **25.** Arithmetic mean of [......] 3, 4, 5, 6, 7 is
- (H) 8

(ii) Group - A

Group - B

26. $\tan \frac{\pi}{4} = \dots$

- [.....]
- (I) 2

- **27.** $\cos^2 0^\circ + \sin^2 90^\circ = \dots$
- [.....]
- (J) 3

 $28. \quad \begin{vmatrix} 3 & -1 \\ 4 & 0 \end{vmatrix} = \dots$

- [.....]
- (K) 6

(L) 1

- **29.** If $\begin{bmatrix} 2 & K \\ 1 & 3 \end{bmatrix}$ is singular matrix,
- [.....]
- (M) 5

- $\textbf{30.} \quad \text{The number of major parts} \quad$
- [.....]
- (N) 4

in a Computer is

then $K = \dots$

(O) 7