Maths Paper - II

Time: 2 1/2 Hours.

PARTS A & B

Marks: 50

Instructions:

- 1. Answer the questions under Part A on a separate answer book.
- 2. Write the answers to the questions under Part B on the question paper itself and attach it to the answer book of Part A.

Time: 2 Hours.

PART - A

Marks: 35

SECTION - I (Marks: $5 \times 2 = 10$)

- Note: 1. Answer **ANY FIVE** questions, choosing at least **TWO** from each of the following **Groups**.
 - 2. E question carries **TWO** marks.

Group - A

(Geometry, Analytical Geometry and Statistics)

- 1. Two poles of heights 6 mts. and 11 mts. stand vertically on a plane ground. If the distance between their feet is 12 mts., determine the distance between their tops.
- 2. Find the equation of the line passing through the point (3, 4) and is parallel to 4x + 7y = 8.
- 3. Find the area of the triangle formed by the line 2x 4y 7 = 0 with the co-ordinate axes.
- 4. The mean of 20 observations is 12.5. By an error, one observation is registered as 15 instead of 15. What is the correct mean?

Group - B

(Trigonometry, Matrices and Computing)

- 5. Show that $\sin^2 A + \cos^2 A = 1$.
- 6. If $B = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$, show that $B + B^{-1} = 41$.
- 7. Explain the structure of a Computer by means of a block diagram.
- 8. Write the characteristics of a Computer.

SECTION - II (Marks: $4 \times 1 = 4$)

- Note: 1. Answer **ANY FOUR** questions from the following Six questions.
 - 2. Each question carries **ONE** mark.
 - 9. Find the intercepts of line 2x y + 7 = 0.
- 10. A laddder 25 m long reaches a window of a building 24 m above the ground. Determine the distance of the foot of ladder from the building.
- 11. Observations of some data are, $\frac{x}{5}$, x, $\frac{x}{4}$, $\frac{x}{2}$ and $\frac{x}{3}$. If the median of the data is 8, find the value of x.
- 12. Eliminate θ from $x = a \sec \theta$, $y = b \tan \theta$.
- 13. If $\begin{bmatrix} 2a & 5 \\ 6 & 3 \end{bmatrix}$ has no Multiplicative Inverse, find a.
- 14. State any four languages you have known, that are used in Computers.

SECTION - III (Marks : $1 \times 5 = 5$) Group - A

(Geometry, Analytical Geometry and Statistics)

- 15. State and prove the "Thales theorem".
- 16. Find the equation of a line passing through the point (5, -3) and whose sum of the intercepts on the co-ordinate axes is $\frac{5}{6}$.
- 17. Two vertices of a triangle are A (-4, 4), B (6, 12) and centroid is G (0, 6). Find coordinates of third vertex 'C' and show that area of \triangle ABC = 3 [area of \triangle AGB]
- 18. The following distribution of 100 individuals, according to their age, is shown in the following table. Find the Median.

Age (Years	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69	70 - 79
Frequency	15	16	38	15	9	7

Group - B

(Trigonometry, Matrices and Computing)

- 19. Prove that $\cos^6\theta + \sin^6\theta = 1 3 \sin^2\theta$ $\cos^2\theta$.
- 20. Solve the following equations using Matrix Inversion method: 2x + 5y = 11; 4x - 3y = 9.
- 21. If $A = \begin{bmatrix} 7 & 4 \\ 5 & 3 \end{bmatrix}$, find A^{-1} and show that A. $A^{-1} = A^{-1} \cdot A = 1$.
- 22. Draw a flow chart to find the value of the product of the first 'n' natural numbers.

SECTION - IV (Marks: $4 \times 4 = 16$)

- 23. From the ground and first floor of a building, the angles of elevation of the top of the spire of a church were found to be 60° and 45^0 respectively. The first floor is 5 mts. high. Find the height of the spire of the church.
- Construct the circum-circle of the triangle 24. ABC, when AB = 4 cms., BC = 4 cm.AC = 6 cm.

Ti	me: 30 Minutes		DADT		<u> </u>	
===			PART			Ma
Not	3. All questions	s are to be answer	ed.	•		e question paper only. en, or erased answers.
I.	Write the CAPI the answer in against each qu	the brackets	provided (of $\frac{3}{4}$, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{1}{6}$, $\frac{7}{12}$ is
1.	$\triangle ABC \sim \triangle DE$ $\angle E + \angle F =$		50^{0} , then		A) 1/6 C) 7/12	B) 2/3 D) 3/4
	A) 90 ⁰ C) 130 ⁰	B) 40 ⁰ D) 50 ⁰		t	then∠B =	$-\mathbf{B}) = \sqrt{3}, \tan \theta$
2.	In Δ ABC, BC		gle. []	,	A) 15 ⁰ C) 60 ⁰	B) 30 ⁰ D) 45 ⁰
9 .	A) ∠ A . C) ∠ C	B) ∠B D) None		(one minute,	nakes 360 revolu then through he s it turn in one se
3 .	The centroid of sides are given + y = 6 is			A		B) 9 π D) 6 π
4.	A) (0, 0) C) (3, 3)	B) (2, 2) D) (6, 6)	2 (2 222)	9. "I	Determinant o	of $\begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}$ is
Т.	Distance betwee 0) (0, a sin θ) A) a	een the points B) √a		F	A) 7	B) 5
	C) a^2	D) 0		10. I	_	D) 6 neration computer
5.	at	•	e Y - axis	P	ised. A) Vacuum tu B) Transistors	
	A) $\left(0, \frac{c}{m}\right)$	B) $\left(0, \frac{-c}{m}\right)$. (e Integrated Circuit
	C) $\left(\frac{m}{c},0\right)$	D) $\left(\frac{-m}{c},0\right)$				

6.	The median of	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{7}{12}$	is		[,]
	A) 1/6			B)	2/	3		,			

- C) 7/12D) 3/4
- If $tan (A + B) = \sqrt{3}$, tan A = 1, then $\angle B =$
 - A) 15^{0}
- B) 30^{0}

Marks: 15

- $C) 60^{0}$
- D) 45^{0}

If a wheel makes 360 revolutions in one minute, then through how many radians does it turn in one second?

- Α) 12 π
- $B) 9 \pi$

- C) 36π
- D) 6π

Determinant of $\begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}$ is

10. In second generation computers, ...were used.

- A) Vacuum tubes
- B) Transistors
- C) Large scale Integrated Circuits
- D) Electronic circuits

•				
II F	ill in	the	blan	ks.

 $10\times1/2=5$

- 11. If two circles touch externally, then number of their common tangents is
- 12. If a line divides any two sides of a triangle in the same ratio, then the line isto the third side.
- 13. The angle between the lines x 2 = 0, y + 3 = 0 is
- 14. The line 2x 3y = K is passing through the origin, then the K is
- 15. The mode of 4, 5, 6, 7, 8, 9, 6 is

- 16. The mean of 9, 11, 13, P is 7; then the value of P is
- 18. If $\sin \theta = \cos \theta$, $0^0 < \theta < 90^0$, then the value of θ (in degrees) =
 - 19. An example for input unit is
- 20. If $P = \begin{bmatrix} 3 & 0 \\ 0 & \lambda \end{bmatrix}$ is a Scalar Matrix, then the λ

III. Match the following.

i) Group - 'A'

- 21. The slope of a line perpendicular to x 2y + 5 = 0
- 22. y = 2x 3 and y = 2x + 1 are
- 23. x 2y and x + y = -2 intersect at
- 24. Class length of 10 20, 20 30
- 25. Class middle value is used in

Group - 'B'

 $5 \times 1/2 = 2 1/2$

- (A) (-2, 0)
-] (B) 10
-] (C) Perpendicular lines
 -] (D) 2
-] (E) Arithmetic Mean
 - (F) Parallel lines
 - (G) 2
 - $(H)_{i}(0,-2)$

Group - 'B'

 $5 \times 1/2 = 2 1/2$

26.
$$\begin{vmatrix} \tan \theta & \sec \theta \\ \sec \theta & \tan \theta \end{vmatrix} =$$

- 27. If $\begin{pmatrix} x & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$, then the value of x is [
- 28. Inverse of the identity matrix l, is
- 29. If $\csc \theta \cot \theta = 4$, then $\csc \theta + \cot \theta$ [
- 30. The point which is equidistance from the vertices of a triangle.
-] (J) 1/4
-] (K) Circum-centre
-] (L) $\tan^2 \theta + \sec^2 \theta$
- [] (M) B⁻¹ (N) 4
 - (O) 1 (P) -1 (Q)In centre

PART-B: ANSWERS

- I. (1) C (2) B (3) B (4) A (5) B (6) C (7) A (8) A (9) A (10) B
- II. (11) 3 (12) parallel (13) 90^{0} (or right angle) (14) 0^{0} (15) 6 (16) -5 (17) $\begin{pmatrix} 5x & 5y \\ 2x & 2y \end{pmatrix}$ (18) 45^{0}
- (19) Key board (or any input unit) (20) 3

 III. i) (21) D (22) F (23) H (24) B (25) E ii) (26) P (27) N (28) O (29) J (30) K