EAMCET-2010 MEDICAL-BOTANY

1. Study the following lists.

List - I
A) The oldest book on agriculture
B) Micrographia
C) Description of sexual reproduction in plants
D) Role of chromosomes in heredity

List - II

I) Robert Hooke
II) Camerarius
III) Van Leeuwenhock
IV) Parasara
V) Sutton and Boveri

The correct match is

	A	B	C	D		A	B	C	D
1)	II	IV	III	V	2)	IV	III	V	II
$3)$	II	III	I	V	$4)$	IV	I	II	V

2. The following plants are devoid of some vital organs. Arrange these in the order of absence of root, stem, leaf, flower and fruit, respectively
I) Rafflesia
II) Equisetum
III) Ceratophyllum
IV) Gnetum
V) Taeniophyllum

The correct order is

1) V, I, III, II, IV
2) II, IV, I, III, V
3) I, III, V, IV, II
4) III, V, I, II, IV
3. A teacher was explaining about a plant whose venation pattern is basically similar to Eryngium, fruit is berry and stem shows signs of perennation. He was trying to arrive at one of the following.
1) Musa
2) Brinjal
3) Glory lilly
4) Mango
4. Study the following lists.

List - I

A) Cohesion among the anthers only
B) Cohesion of staminal filaments only into bundles
C) Adhesion of stamens to tepals
D) Adhesion of stamens to sepals

List - II
I) Citrus
II) Cucurbita
III) Allium
IV) Grevillea
V) Helianthus

The correct match is

	A	B	C	D		A	B	C
1)	V	II	IV	III	2)	IV	I	II
3)	V	II	IV	III	$4)$	V	I	III
	IV							

5. From the following, identify the plants having inflorescences with male, female and sterile flowers.
I) Casuarina
II) Vernonia
III) Colocasia
IV) Ficus
1) I, II
2) II, III
3) III, IV
4) I, IV
6. Fruits which break at maturity into number of pieces equal to the number of carpels are found in
I) Aristolochia
II) Datura
III) Dolichos
IV) Abelmoschus
1) I, II
2) II, III
3) I, IV
4) III, IV
7. Assertion(A) : In Fritillaria, the embryo sac is described as tetrasporic type.

Reason(R) : In Fritillaria, four megaspore mother cells are involved in the formation of an embryo sac.

1) Both A and R are true and R explains A
2) Both A and R are true and R does not explains A
3) A is true, R is false
4) A is false, R is true
8. The ration of components of male flower of Smilax, female flower of Ruscus, modified reproductive shoots of Scilla and Tephrosia is
1) $4: 3: 5: 7$
2) $7: 5: 4: 3$
3) $7: 3: 5: 4$
4) $4: 7: 5: 4$
9. The ratio of the cohorts of the first two subclasses of Dicotyledonae in Bentham and Hooker classification is
1) $1: 1$
2) $2: 3$
3) $5: 7$
4) $3: 2$

Eamcet-2010 Medical (Botany)

10. Assertion(A) : Phylogenetic system of classification are considered as post-Darwinian.

Reason (R) : They are proposed after the publication of the book 'Origin of Species'.

1) Both A and R are true and R explains A
2) Both A and R are true and R does not explains A
3) A is true, R is false
4) A is false, R is true
11. Identify the true statement in the following.
1) Each nucleosome consists of a core of five types of nine histone molecules
2) Oxidation of fatty acids and synthesis of phospholipids occur in peroxisomes
3) Telocentric chromosome contains two unequal arms
4) Smaller sub-unit of ribosome contains the enzyme peptidyl transferase
12. Activity of ligase enzyme is found in
1) Leptotene
2) Zygotene
3) Pachytene
4) Diplotene
13. If there are 135 hydrogen bonds between two strands of a fragment of DNA double helix which contains $\mathbf{2 3}$ Guanine nitrogen bases, what is its total length?
1) $19.04 \mathrm{~A}^{0}$
2) $190.4 \mathrm{~A}^{0}$
3) $1904 \mathrm{~A}^{0}$
4) 190.4 nm
14. Which of the following statements related to plant structure are true ?
I) The cotyledons of Mouriria have trichosclereids
II) Young sieve elements possess cytoplasm without nucleus
III) Cells of pericycle in dicot root are capable of didifferentiation
IV) Cork lacks stomata but yet performs gaseous exchange
1) I, II
2) II, III
3) III, IV
4) II, IV
15. Identify the plant in which the tangential walls of collocytes are excessively thickened but radial walls are thin
1) Monstera
2) Cucurbita
3) Lactuca
4) Eupatorium
16. Closely and compactly arranged fundamental tissue is not found in
1) Prothallus of Pteris
2) Medulla of dicot stem
3) Columella of Funaria
4) Adaxial mesophyll of Nerium
17. Study the following lists.

List - I
A) Heterophyllous plant
B) Plant without roots
C) Plant with largest simple leaves
D) Plant with succulent roots

The correct match is

	A	B	C	D		A	B	C	D
1)	III	II	V	I	$2)$	III	IV	II	I
$3)$	I	V	III	II	$4)$	III	I	II	V

18. Study the following lists.

List - I
A) Ribbon shaped leaves
B) Shiny leaf surfaces
C) Swollen and spongy petiole
D) Dissected leaves

The correct match is

	A	B	C	D		A	B	C	D
1)	III	IV	I	II	$2)$	IV	I	V	II
$3)$	V	I	II	III	$4)$	IV	II	V	III

List - II
I) Calotropis
II) Ceratophyllum
III) Potamogeton
IV) Vallisneria
V) Eichhornia
19. Study the following lists.

List - I
A) T.H. Morgan
B) G.J. Mendel
C) Bateson
D) Reginald C. Punnett

List - II
I) Coined the term Genetics
II) Linkage
III) Checker board
IV) Laws of Heredity
V) Mutations

The correct match is

	A	B	C	D	A	B	C	D	
1)	III	IV	I	II	$2)$	II	IV	I	III
$3)$	I	II	V	IV	$4)$	IV	III	II	I

20. Assertion(A) : Induced mutations are widely used in crop improvement.

Reason(R) : Physical and chemical mutagens cause genetic variability in a population and produce only desirable characters.

1) Both A and R are true and R explains A
2) Both A and R are true and R does not explains A
3) A is true, R is false
4) A is false, R is true
21. How many zygospores are formed in a 100 - celled filament of Spirogyra affinis if all cells are involved in conjugation?
1) 99
2) 50
3) 49
4) 1
22. Identify the correct sequence of the stages in the life cycle of Rhizopus after the reduction division of zygospore
1) Promycelium \rightarrow germ sporangium \rightarrow germ spores \rightarrow mycelium
2) Promycelium \rightarrow germ spores \rightarrow germ sporangium \rightarrow mycelium
3) Mycelium \rightarrow promycelium \rightarrow germ spores \rightarrow germ sporangium
4) Promycelium \rightarrow mycelium \rightarrow germ sporangium \rightarrow germ spores
23. Study the following lists.

List - I

A) Neck of archegonium in Funaria

List - II
B) Neck of archegonium in Pteris
I) Two nucleated
C) Neck canal cell in Pteris
II) Two celled
III) Zero
IV) Six vertical rows of cells
V) Four vertical rows of cells

The correct match is

	A	B	C	D		A	B	C	D
1)	III	IV	II	V	$2)$	IV	V	I	III
3)	III	IV	II	I	$4)$	IV	III	V	I

24. False statement related to Cycas is
1) Motile male gametes and pollen tube are involved in fertilization
2) Endosperm formation occurs before fertilization
3) Ovule contains pollen chamber
4) Gametophytic tissue is not found in seeds
25. Study the following combinations and identify correct matches.
I) Bacillus vulgaris - Saprophyte - Mineralization
II) Erwinia amylovora - Saprophyte - Biopesticide
III) Agrobacterium tumefaciens - Saprophyte - Genetic Engineering
IV) Edellovibrio bacteriovorus - Parasite - Water purification
1) I, II
2) II, III
3) I, IV
4) II, IV
26. The disease caused by the virus having double stranded nucleic acid with ribose sugar as genetic material is
1) Tobacco mosaic disease
2) Cauliflower mosaic disease
3) Dahlia mosaic disease
4) Rice stunting disease

Eamcet-2010 Medical (Botany)

27. Study the following table and identify the correct sequence of cells which shows the path of water movement between them

Cell	Osmotic Potential (MPa)	Pressure Potential (MPa)
A	$\mathbf{- 0 . 9 5}$	$\mathbf{0 . 4 0}$
B	$\mathbf{- 0 . 7 5}$	$\mathbf{0 . 4 0}$
C	$\mathbf{- 0 . 8 5}$	$\mathbf{0 . 2 5}$
D	$\mathbf{- 0 . 6 5}$	$\mathbf{0 . 2 5}$

1) $D \rightarrow B \rightarrow C \rightarrow A$
2) $B \rightarrow C \rightarrow D \rightarrow A$
3) $C \rightarrow B \rightarrow A \rightarrow D$
4) $B \rightarrow D \rightarrow A \rightarrow C$
28. The right sequence of carriers which involve in the transport of excess $\mathbf{N a}^{+}$ions out of the cell in salt resistant plants is
1) Uniporter, Symporter
2) Symporter, Antiporter
3) Antiporter, Uniporter
4) Uniporter, Antiporter
29. Study the following.

List - I
A) Sulphur
B) Molybdenum
C) Copper
D) Manganese

List - II

I) Cytochrome - C - Oxidase
II) IAA synthesis
III) Biotin
IV) Dinitrogenase
V) Oxygen evolving complex

The correct match is

	A	B	C	D		A	B	C	D
1)	III	IV	II	I	2)	IV	III	I	II
3)	III	IV	I	V	4)	IV	I	II	V

30. The carbon ratio of lutein, abscisic acid and $\mathbf{G A}_{27}$ is
1) $6: 3: 4$
2) $5: 3: 4$
3) $8: 3: 4$
4) $4: 3: 5$
31. Arrange the following respiratory substrates in decreasing order of CO_{2} molecules released when one molecule of each of them is oxidized
I) Tripalmitin
II) Oleic acid
III) Triolein
IV) Malic acid
1) I, II, IV, III
2) III, IV, II, I
3) III, I, II, IV
4) III, II, IV, I
32. $\underline{\text { Assertion(A) }}$: The energy requirement for the formation of one hexose molecule is more in Chlorella than in Sugarcane.
Reason(R) : The formation of phosphoenol pyruvic acid from pyruvic acid requires two ATP molecules.
1) Both A and R are true and R explains A
2) Both A and R are true and R does not explains A
3) A is true, R is false
4) A is false, R is true
33. Eight molecules of an enzyme solution is mixed with 1000 molecules of the substrate in a reaction mixture. If it converts 80% of the substrate into product in five minutes, then its turnover number is
1) 10
2) 15
3) 20
4) 60
34. Study the following lists.

List - I

A) Oxidative decarboxylation
B) Competitive inhibition
C) Metal ion as co-factor
D) Organic molecule as co-factor

The correct match is

	A	B	C	D		A	B	C	D
1)	II	I	V	IV	2)	V	II	III	I
$3)$	II	V	I	IV	$4)$	V	I	II	IV

Eamcet-2010 Medical (Botany)

35. Which if the following statements related to protein synthesis are true?
I) Transcribed $\boldsymbol{h} \boldsymbol{n}-$ RNA and \boldsymbol{m}-RNA of gene are similar in size
II) The 3^{\prime} CCA end of t-RNA acts as amino acid binding site
III) \boldsymbol{f}-met-t-RNA binds on to the ' P ' site in ribosome
IV) The protein factor called RF_{3} helps in recognizing the termination codon
1) I, III
2) II, III
3) II, IV
4) I, IV
36. If ' X ' molecules of ATP are utilized to produce one molecule of glucose during photosynthesis of a C_{3} plant and ' Y ' molecules of ATP are formed through substrate level phosphorylation during the breakdown of one molecule of glucose in aerobic respiration, then the ratio of ' X ' and ' Y ' is
1) $3: 1$
2) $5: 2$
3) $1: 1$
4) $2: 3$
37. Study the following lists.

List - I
A) Mass selection
B) Pure line selection
C) Spontaneous mutation
D) Clonal selection

List - II

I) Co-10 rice variety
II) Kufri red potato variety
III) Dharwar American cotton variety
IV) Basmati rice variety
V) GEB-24 rice variety

The correct match is

	A	B	C	D		A	B	C	D
1)	III	I	V	II	$2)$	III	V	I	II
3)	II	IV	III	V	$4)$	IV	I	III	II

38. Identify the correct combination of the following related to recombinant DNA technology
1) Ti plasmid - Artificially synthesized plasmid
2) DNA probe - Radioactively labelled double stranded DNA
3) Sticky ends of DNA - Facilitate the action of DNA Ligase
4) Colony hybridization - Identification of antibiotic resistant gene
39. Study the following lists.

List - I
A) B-vitamins rich SCP
B) Fox fire
C) Methionine deficient SCP
D) Lysine rich SCP

List - II
I) Dunaliella salina
II) Amanita muscaria
III) Candida lipolytica
IV) Armillariella mellea
V) Methylophilus methylotrophus

The correct match is

	A	B	C	D		A	B	C
1)	III	IV	I	V	2)	III	II	I
3)	III	V	I	IV	$4)$	I	IV	II
III								

40. From the following, identify DNA fragment showing palindromic sequence.

2) $\begin{array}{cccccccc}5^{\prime} & A & A & C & C & A & G & 3^{\prime} \\ 3^{\prime} & T & T & G & G & A & T & 5\end{array}$,
3) $\begin{array}{cccccccc}5^{\prime} & T & T & G & A & G & T & 3 \\ 3 & A & A & C & T & C & A & 5\end{array}$,

1)	$\mathbf{4}$	2)	$\mathbf{4}$	3)	$\mathbf{1}$	$4)$	$\mathbf{4}$	$5)$	$\mathbf{3}$	$6)$	$\mathbf{3}$	$7)$	$\mathbf{3}$	$8)$	$\mathbf{1}$	$9)$	$\mathbf{4}$	10)	$\mathbf{1}$
11$)$	$\mathbf{2}$	$12)$	$\mathbf{3}$	$13)$	$\mathbf{2}$	$14)$	$\mathbf{3}$	$15)$	$\mathbf{4}$	$16)$	$\mathbf{2}$	$17)$	$\mathbf{1}$	18)	$\mathbf{2}$	$19)$	$\mathbf{2}$	20	$\mathbf{3}$
21$)$	$\mathbf{2}$	$22)$	$\mathbf{1}$	$23)$	$\mathbf{2}$	$24)$	$\mathbf{4}$	$25)$	$\mathbf{3}$	$26)$	$\mathbf{4}$	$27)$	$\mathbf{4}$	$28)$	$\mathbf{4}$	$29)$	$\mathbf{3}$	$30)$	$\mathbf{3}$
31$)$	$\mathbf{3}$	$32)$	$\mathbf{4}$	$33)$	$\mathbf{3}$	$34)$	$\mathbf{3}$	$35)$	$\mathbf{2}$	$36)$	$\mathbf{1}$	37	$\mathbf{1}$	$38)$	$\mathbf{3}$	$39)$	$\mathbf{1}$	40	$\mathbf{4}$

EAMCET-2010 MEDICAL-ZOOLOGY

41. Statement (S) : Populations of a species inhabiting different geographical areas are in a continuous process of adaptation to their surrounding environments and this leads to the evolution of new species.

Reason (R) : Geographical barriers obstruct interbreeding of populations of a species leading to reproductive isolation and evolution of new species.

1) Both (S) and (R) are not true
2) Only (S) is true but not (R)
3) Both (S) and (R) are true but (R) does not explain (S)
4) Both (S) and (R) are true and (R) is correct explanation to (S)
42. Which of the following statements are correct with regard to Deuterostomes?
(a) The blastopore develops into anus in adult
(b) The blastopore develops into mouth in adult
(c) Cleavage is radial and indeterminate
(d) Cleavage is spiral and determinate
1) (a) and (c)
2) (a) and (b)
3) (b) and (d)
4) (b) and (c)
43. Choose the animal which exhibits the following characteristics:
(a) Marine habitat
(b) Bilateral symmetry with cephalization
(c) Haemocoel as principak body cavity
(d) Eyes similar to that of vertebrates
1) Jelly fish
2) Cuttle fish
3) Silver fish
4) Dog fish
44. Which of the following is the correct swquence of cell cycle?

The correct answer is:

1) $\mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{~S} \rightarrow \mathrm{M}$
2) $\mathrm{S} \rightarrow \mathrm{M} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{G}_{1}$
3) $\mathrm{G}_{1} \rightarrow \mathrm{~S} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{M}$
4) $\mathrm{M} \rightarrow \mathrm{S} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{G}_{1}$
45. Match the types of animal tissues given under List I with the parts/organs in which they occur, given under List II:

List I

(Tissue)
(A) Squamous epithelium
(B) Hyaline cartilage
(C) Adipose tissue
(D) Smooth muscle

List II

(Part/Organ)

(I) Walls of nose
(II) Bowman's capsule
(III) Iris
(IV) Yellow bone marrow
(V) Ear pinna

The Correct match is:

	$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$		$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$
$1)$	V	I	IV	II	$2)$	V	IV	I	III
$3)$	II	I	IV	III	$4)$	II	IV	I	III

Eamcet-2010 Medical (Zoology)

46. The plane that divides the body into right and left halves:
(1) Transverse
(2) Frontal
(3) Sagittal
(4) Radial
47. Match the following:

List I

(A) Reticulopodia
(B) Lobopodia
(C) Filopodia
(D) Axopodia

List II

(I) Lecithium
(II) Collozoum
(III) Globigerina
(IV) Ceratium
(V) Entamoeba

The correct match is:

	$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$		$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$
1)	III	IV	II	I	$2)$	III	V	I	II
$3)$	IV	V	I	III	$4)$	II	III	I	IV

48. The fusion of pronuclei of dissimilar grametes is called:
1) Syngamy
2) Neoplasia
3) Isogamy
4) Hologamy
49. The process by which a new structure is formed in the tissue of the host during parasitic infection:
1) Hyperplasia
2) Neoplasia
3) Hypertrophy
4) Gigantism
50. Match the following:

Parasite

(A) Plasmodium vivax
(B) Taenia solium
(C) Entamoeba histolytica (III) Sporozoite
(D) Wuchereria bancrofti (IV) Cysticercus

The correct match is:

(1)	A(III) (b)	B(IV) (d)	C(II) (c)	D(I) (a)
(2)	A(III) (b)	B(IV) (d)	C(I) (c)	D(II) (a)
(3)	A(IV) (a)	B(II) (d)	C(I) (b)	D(III) (c)
(4)	A(III) (b)	B(IV) (d)	C(I) (a)	D(II) (c)

51. In pheretima, septa are absent between some of the segments. They re:

The correct answer is:

1) $\frac{1}{2}, \frac{2}{3}, \frac{9}{10}, \frac{10}{11}$
2) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{9}{10}$
3) $\frac{4}{5}, \frac{9}{10}, \frac{10}{11}, \frac{14}{15}$
4) $\frac{1}{2}, \frac{2}{3}, \frac{8}{9}, \frac{10}{11}$
52. In pheretima, the open type of nephridia are located in these segments:
1) 4th, 5th and 6th
2) 2 nd to the last
3) 16 th to the last
4) 7th, 9th and 13 th

Eamcet-2010 Medical (Zoology)

53. The cells, present in the fat bodies of cockroach, which contain symbiotic bacteria that synthesize amino acids are:
1) Trophocytes
2) Mycetocytes
3) Oenocytes
4) Urate cells
54. In cockroach, the thermoreceptor sensilla are present on:
1) Antenna, maxillary and labial palps
2) Labrum, maxillary and labial palps
3) First, second and third trasomeres of tarsus
4) Anal cerci and pedicel of antennae
55. Statement (S): Biting and chewing mouth parts are the most primitive type of mouth parts in insects.

Reason (R): Holometabolus insects have biting and chewing type of mouth parts in their larvae.
(1) Both (S) and (R) are correct and (R) is he correct explanation of (S)
(2) Both (S) and (R) are correct and (R) is not the correct explanation of (S)
(3) (S) is correct but (R) is wrong
(4) (S) is wrong but (R) is correct.
56. Which one of the following arthropods is viviparous?

1) Palaemon
2) Palamnaeus
3) Pediculus
4) Periplaneta
57. Shannon's index (H) represents:
1) The relation between two randomly selected individuals of the same species in a habitat
2) Relaive abundance of each species
3) The probability that two randomly selected individuals in he habitat belong to the same species
4) Number of genes of a specific trait that exist within a population
58. The scientific name of Kashmiri stag is:
1) Sus salvanius
2) Grus leucogeranus
3) Cervus elephus hanglu
4) Ailurus ochraceus
59. Select the animal from the examples given below which exhbits neoeny in its larval stage:
1) Amphiuma
2) Typhlonectes
3) Ambystoma
4) Necturus
60. Ductus Botalli connects:
1) Two systemic arches
2) Pulmonary and systemic arches
3) Systemic and carotid arteries
4) Carotid and pulmonary arteries
61. Which of he following exhibit discontinuous distribution?
1) Ratitae and Osteichthyes
2) Metatheria and Carinatae
3) Dipnoi and Ratitage
4) Prototheria and Urodela
62. The animal with epipubic bones and a chorioallontoic placenta is :
1) Opossum rat
2) Koala bear
3) Marsupial bandicoot
4) Opossum
63. Arrage the correct sequence of enzymes which act on food in different regions of alimentary canal:
(a) Pepsin
(b) Ptyalin
(c) Dipeptidase
(d) Carboxypeptidase

The correct answer is:

1) (a) (b) (c)
(d)
2) (b)
(a) (d) (c)
3) (a)
(d) (c) (b)
4) (b) (a)
(c) (d)
64. Number of oxygen mplecules bound in a saturated haemoglobin molecule:
1) One
2) Two
3) Three
4) Four
65. Mitral valve is:
1) Right atrio-ventricular valve
2) Left atrio-ventricular valve
3) Eustachian valve
4) Spiral valve
66. Which of the following is an autoimmune disorder?
1) Hypothyroidism
2) Acromegaly
3) Gigantism
4) Grave's disease

Eamcet-2010 Medical (Zoology)

67. Which one of the following statements is not true with referene to the genes of eukaryotic animals?
1) RNA polymerase allows the transcripotion of structural genes to synthesize a polycisdtronic m-RNA
2) Many genes have stretches of nitrogen bases that code for amino acids and are called 'exons'
3) Heterogenous nuclear RNA (hn RNA) is synthesized from split genes
4) The bases that do not code for amino acids are called 'introns'
68. Match vertebral number and the corresponding region in rabbit:

List I

(A) Cervical
(B) Thoracic
(C) Caudal
(D) Sacral

The correct math is:

	$\underline{\text { A }}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$
$1)$	IV	III	II	I
$3)$	I	II	III	IV

2) $\quad \underline{\underline{\mathbf{A}}} \quad \underline{\underline{\mathbf{B}}} \quad \underline{\underline{\mathbf{C}}} \quad \underline{\underline{\mathbf{D}}}$
3) III I IV II
69. Which event of the 'action potential' is indicated by the letter (A) in the diagram?
1) Influx of K^{+}
2) Efflux of Na^{+}
3) Influx of Na^{+}
4) Efflux of K^{+}

70. Identify the 'place of hydrolysis of ATP' and the 'power stroke' in muscle contraction, in the picture given below:

The correct answer is:

1) (A) and (D)
2) (B) and (C)
3) (C) and (D)
4) (A) and (B)
71. The inability to regulate the concentration of sodium ions in the blood could be due to the improper functioning of one of the following
1) Adenohypophysis : It produces ACTH
2) Adrenal cortex : It produces epinephrine
3) Adrenal medulla : It produces epinephrine
4) Pars nervosa : It produces ADH

Eamcet-2010 Medical (Zoology)

72. The Macrophages present in the liver are called
1) Microglial cells
2) Histiocytes
3) Lymphocytes
4) Kupffer cells
73. A mother with blood group 'B' type has a child with blood group type 'O'. What is the possibility of the genotypes of that mother and father ?
1) $I^{A} I^{A}$ (father) and $I^{B} I^{\mathrm{O}}$ (mother)
2) IAIB (father) and IBIB (mother)
3) $\mathrm{I}^{\mathrm{A}} \mathrm{I}^{\mathrm{O}}$ (father) and $\mathrm{I}^{\mathrm{B}} \mathrm{I}^{\mathrm{O}}$ (mother)
4) $I^{B} I^{O}$ (father) and $I^{A} I^{O}$ (mother)
74. Drumstick Barr bodies are found in
1) All RBC of females
2) All RBC of males
3) Some neutrophils of females
4) Some neutrophils of males
75. Match the following in Drosophila with reference to sex determination

List I

(Ratio of X Chromosomes to Autosomes) X/A
A) 0.5
B) 1.0
C) 1.5
D) 0.33
E) 0.67

	$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$	$\underline{\mathbf{E}}$
$1)$	3	1	2	4	5
$3)$	1	4	2	5	3

List II

(Sex)

1) Metafemale
2) Metamale
3) Male
4) Intersex
5) Female

	$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$	$\underline{\mathbf{E}}$
$2)$	3	5	1	2	4
$4)$	2	3	1	4	5

76. Statement (S): The concept of survival of the fittest is central to natural selection

Reason (R) : Individuals who possess advantageous characters to adapt to the environment have better potential for survival

1) Only (S) is true but not (R)
2) Both (S) and (R) are true but (R) is not the correct explanation to (S)
3) Both (S) and (R) are true and (R) is the correct explanation to (S)
4) Both (S) and (R) are not true
77. Find the frequency of heterozygotes in a population which exhibits the Hardy - Weinberg equilibrium, if the frequencies of the two alleles in the population are 0.6 and 0.4
1) 0.80
2) 0.64
3) 0.48
4) 0.32
78. Haemopoietic stem cells are
1) Totipotent cells
2) Pleuripotent and multipotent cells
3) Unipotent cells
4) Differentiated cells

Eamcet-2010 Medical (Zoology)

79. The application of Polymerase Chain Reaction is:
1) to demonstrate DNA as genetic material
2) to replicate specific DNA sequences at high temperatures
3) to determine minerals in biological tissue
4) to replicate RNA sequences at low temperatures
80. Match the following:

List I

(Common Name)
I) Cat fish
II) Milk fish
III) White shrimp
IV) Grey mullet

List II

(Scientific Name)
A) Clarias batrachus
B) Chanos chanos
C) Heteropneustes fossilis
D) Mugil cephalus
E) Penaeus monodon
F) Penaeus indicus

The correct match is

	$\underline{\mathbf{I}}$	$\underline{\text { II }}$	$\underline{\text { III }}$	$\underline{\text { IV }}$	$\underline{\text { I }}$	$\underline{\text { II }}$	$\underline{\text { III }}$	$\underline{\text { IV }}$
1)	A	C	E	D	$2)$	B	D	E
3)	A	B	F	D	$4)$	B	D	F
A								

41$)$	$\mathbf{4}$	$42)$	$\mathbf{1}$	$43)$	$\mathbf{2}$	$44)$	$\mathbf{3}$	$45)$	$\mathbf{3}$	$46)$	$\mathbf{3}$	$47)$	$\mathbf{2}$	$48)$	$\mathbf{2}$	$49)$	$\mathbf{2}$	50	$\mathbf{1}$
51$)$	$\mathbf{2}$	$52)$	$\mathbf{3}$	$53)$	$\mathbf{2}$	$54)$	$\mathbf{3}$	$55)$	$\mathbf{1}$	$56)$	$\mathbf{2}$	$57)$	$\mathbf{2}$	$58)$	$\mathbf{3}$	$59)$	$\mathbf{3}$	$60)$	$\mathbf{2}$
61$)$	$\mathbf{3}$	$62)$	$\mathbf{3}$	$63)$	$\mathbf{2}$	$64)$	$\mathbf{4}$	$65)$	$\mathbf{2}$	$66)$	$\mathbf{4}$	$67)$	$\mathbf{1}$	$68)$	$\mathbf{2}$	$69)$	$\mathbf{3}$	$70)$	$\mathbf{2}$
71$)$	$\mathbf{2}$	$72)$	$\mathbf{4}$	$73)$	$\mathbf{3}$	$74)$	$\mathbf{3}$	$75)$	$\mathbf{2}$	$76)$	$\mathbf{3}$	$77)$	$\mathbf{3}$	$78)$	$\mathbf{2}$	79	$\mathbf{2}$	80	$\mathbf{3}$

EAMCET-2010 MEDICAL-PHYSICS

81. A body weighs 22.42 gm and has a measured volume of 4.7 cc . The possible error in the measurement of mass and volume are 0.01 gm and 0.1 cc . Then the maximum error percentage in the density will be
1) 22%
2) 2.2%
3) 0.22%
4) 0.022%
82. A man moves 20 m North, then 10 m east and then $10 \sqrt{2} \mathrm{~m}$ South-West, his displacement is
1) 20 m North
2) $10 \sqrt{2} \mathrm{~m}$ North-West
3) $10 \sqrt{2} \mathrm{~m}$ South-East
4) 10 m North
83. An electron moving at a speed of $5 \times 10^{6} \mathrm{~ms}^{-1}$ is shot through a sheet of paper which is $2.1 \times 10^{-4} \mathrm{~cm}$ thick. The electron emerges from the paper with speed of $2 \times 10^{6} \mathrm{~ms}^{-1}$. The time taken by the electron in seconds to pass through the paper sheet is
1) 5×10^{-12}
2) 6×10^{-13}
3) 3×10^{-12}
4) 5×10^{-13}
84. Match conservation laws in List-I with the processes in List-II.

List - I

A) Linear momentum
B) Angular momentum
C) Kinetic energy
D) Total energy

List - II

I) Elastic collision
II) Inelastic collision
III) No external force
IV) No external torque
V) All physical processes

The correct match is

	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$	$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$
1) III	IV	I	V	2)	IV	III	I
3)	V	IV	II	I	4)	V	III
V							

85. The kinetic energy K of a particle of mass ' m ' moving along a circle of radius ' R ' depends on distance covered ' S ' as $\mathrm{K}=\mathrm{AS}{ }^{2}$. Then the acceleration of particle is given by
1) $\frac{2 \mathrm{AS}}{\mathrm{m}}\left(1+\frac{\mathrm{S}^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$
2) $\frac{2 A S}{m}\left(1-\frac{S^{2}}{R^{2}}\right)^{1 / 2}$
3) $\frac{2 \mathrm{AS}^{2}}{\mathrm{mR}}$
4) $\frac{2 \mathrm{AS}}{\mathrm{m}}$
86. A sphere of mass moving with constant velocity hits another stationary sphere of the same mass. If 'e' is the coefficient of restitution, then the ratio of velocities of the two spheres after the collision will be
1) $\frac{1}{\mathrm{e}}$
2) $\frac{1-e}{1+e}$
3) $\frac{e}{1+e}$
4) $\frac{e+1}{e}$
87. Two particles A and B initially at rest move towards each other under a mutual force of attraction. At the instant when the velocity of A is V and that of B is 2 V , velocity of centre of mass of the syste is
1) Zero
2) V
3) 2 V
4) 3 V
88. A car is travelling along a curved road of radius r. If the coefficient of friction between the tyres and the road is μ, the car will skid if its speed exceeds
1) $2 \sqrt{\mu \mathrm{rg}}$
2) $\sqrt{3 \mu \mathrm{rg}}$
3) $\sqrt{2 \mu \mathrm{rg}}$
4) $\sqrt{\mu \mathrm{rg}}$

Eamcet-2010 Medical (Physics)

89. $P Q R$ is a right angled triangular plate of uniform thickness as shown in the figure. If I_{1}, I_{2} and I_{3} are moments of inertia about PQ, QR and PR axes respectively, then
1) $\mathrm{I}_{3}<\mathrm{I}_{2}<\mathrm{I}_{1}$
2) $\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}$
3) $\mathrm{I}_{2}>\mathrm{I}_{1}>\mathrm{I}_{3}$
4) $\mathrm{I}_{3}>\mathrm{I}_{1}>\mathrm{I}_{2}$

90. The radius of gyration of a solid sphere of radius R about a certain axis is also equal to R. If r is the distance between the axis and the centre of the sphere, then r is equal to
1) R
2) 0.5 R
3) $\sqrt{0.6} \mathrm{R}$
4) Zero
91. The period of revolution of Jupiter around the sun is 12 times the period of revolution of the earth around the sun. The distance between the Jupiter and sun is n times the distance between the earth and sun. Then the value n is
1) $(144)^{3 / 2}$
2) $(144)^{2 / 3}$
3) $\sqrt[3]{144}$
4) $\sqrt[4]{144}$
92. A mass \mathbf{M} is suspended from a light spring. An additional mass m is added, displaces the spring further by a distance ' x '. Now the combined mass will oscillate with a period.
1) $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{mg}}{\mathrm{x}(\mathrm{M}+\mathrm{m})}}$
2) $\mathrm{T}=2 \pi \sqrt{\frac{(\mathrm{M}+\mathrm{m}) \mathrm{x}}{\mathrm{mg}}}$
3) $\mathrm{T}=\frac{2 \pi}{3} \sqrt{\frac{\mathrm{mg}}{(\mathrm{M}+\mathrm{m}) \mathrm{x}}}$
4) $T=2 \pi \sqrt{\frac{(M+m)}{m g x}}$
93. A 4.0 m long copper wire of cross-sectional area $1.2 \mathrm{~cm}^{2}$ is stretched by a force of $4.8 \times 10^{3} \mathrm{~N}$. If Young's modulus for copper is $\mathrm{Y}=1.2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, the increase in length of wire and strain energy stored per unit volume are
1) $1.32 \times 10^{-4} \mathrm{~m}, 66 \times 10^{3} \mathrm{~J}$
2) $132 \times 10^{-4} \mathrm{~m}, 6.6 \times 10^{2} \mathrm{~J}$
3) $13.2 \times 10^{-4} \mathrm{~m}, 6.6 \times 10^{3} \mathrm{~J}$
4) $0.132 \times 10^{-4} \mathrm{~m}, 66 \times 10^{4} \mathrm{~J}$
94. A spherical liquid drop of diameter D breaks up to n identical spherical drops. If the surface tension of the liquid is ' σ ', the change in energy in this process is
1) $\pi \sigma \mathrm{D}^{2}\left(\mathrm{n}^{1 / 3}-1\right)$
2) $\pi \sigma \mathrm{D}^{2}\left(\mathrm{n}^{2 / 3}-1\right)$
3) $\pi \sigma D^{2}(\mathrm{n}-1)$
4) $\pi \sigma D^{2}\left(\mathrm{n}^{4 / 3}-1\right)$
95. A tank of height 5 m is full of water. There is a hole of cross-sectional area $1 \mathrm{~cm}^{2}$ in its bottom. The volume of water that will come out from this hole per second is ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
1) $10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
2) $10^{-4} \mathrm{~m}^{3} / \mathrm{s}$
3) $10 \mathrm{~m}^{3} / \mathrm{s}$
4) $10^{-2} \mathrm{~m}^{3} / \mathrm{s}$
96. An ideal gas is initially at temperature T and volume V . Its volume is increased by $\Delta \mathrm{V}$ due to an increase in temperature ΔT, pressure remaining constant. The physical quantity $\delta=\frac{\Delta V}{V \Delta T}$ varies with temperature as
1)

2)

3)

Eamcet-2010 Medical (Physics)

97. The pressure P for a gas is plotted against its absolute temperature T for two different volumes V_{1} and V_{2} where $V_{1}>V_{2}$ where $V_{1}>V_{2}$. If P is plotted on y-axis and T on x-axis, then
1) The curve for V_{1} has greater slope than that for V_{2}
2) The curve for V_{2} has greater slope than that for V_{1}
3) Both curves have same slope
4) The curves intersect at some point other than $\mathrm{T}=0$
98. One mole of an ideal gas $(\gamma=1.4)$ is adiabatically compressed so that its temperature rises from $27^{\circ} \mathrm{C}$ to $35^{0} \mathrm{C}$. The change in the internal energy of the gas is $\left(\mathrm{R}=8.3 \mathrm{~J} . \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
1) -266 J
2) 166 J
3) -268 J
4) 168 J
99. A lead bullet of unknown mass is fired with a speed of $180 \mathrm{~ms}^{-1}$ into a tree in which it stops. Assuming that in this process two third of heat produced goes into the bullet and one third into wood. The temperature of the bullet raises (Specific heat of lead $=0.120 \mathrm{Jg}^{-1}{ }^{0} \mathrm{C}^{-1}$)
1)
2)
3) $90^{\circ} \mathrm{C}$
4) $100^{\circ} \mathrm{C}$
100. A cylinder of radius ' R ' made of material of coefficient of thermal conductivity ' k_{1} ' is surrounded by a cylindrical shell of inner radius ' R ' and outer radius 2 R made of a material of coefficient of thermal conductivity ' k_{2} '. The two ends of the combined system are maintained at two different temperatures. There is no loss of heat across the cylindrical surface and the system is in the steady state. The effective coefficient of thermal conductivity of the system is
1) $k_{1}+k_{2}$
2) $\frac{k_{1}+3 k_{2}}{4}$
3) $\frac{3 k_{1}+k_{2}}{4}$
4) $\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}$
101. A source of sound producing wavelength of 50 cm is moving away from stationary observer with $1 / 5$ th speed of sound. Then, what is the wavelength of sound heard by observer ?
1) 70 cm
2) 55 cm
3) 40 cm
4) 60 cm
102. A sound wave travels with a velocity of $300 \mathrm{~ms}^{-1}$ through a gas. 9 beats are produced in 3 sec when two waves pass through it simultaneously. If one of the waves has 2 m wavelength, the wavelength of the other wave is
1) 1.98 m
2) 2.04 m
3) 2.00 m
4) 1.99 m
103. A ray of light travels from an optically denser medium towards rarer medium. The critical angle for the two media is ' C '. The maximum possible of deviation of the ray is
1) $\frac{\pi}{2}-\mathrm{C}$
2) $\pi-2 C$
3) 2 C
4) $\frac{\pi}{2}+C$
104. The magnification produced by an astronomical telescope for normal adjustment is 10 and the length of the telescope is 1.1 m . The magnification, when the image is formed at least distance of distinct vision is
1) 6
2) 14
3) 16
4) 18
105. A thin prism of angle 6^{0} made up of glass of refractive index 1.5 is combined with another prism made up of glass of refractive index 1.75 to produce dispersion without deviation. The angle of second prism is
1) 7^{0}
2) 9^{0}
3) 4^{0}
4) 5^{0}
106. If the ratio of maximum and minimum intensities of an interference pattern is $36: 1$, then the ratio of amplitudes of the two interfering waves will be
1) $3: 7$
2) $7: 4$
3) $4: 7$
4) $7: 5$

Eamcet-2010 Medical (Physics)

107. A short magnet oscillating in vibration magnetometer with a frequency 10 Hz . A downward current of 15 A is established in a long vertical wire placed 20 cm to the West of the magnet. The new frequency of the short magnet is (The horizontal component of earth's magnetic field is $12 \mu \mathrm{~T}$)
1) 4 Hz
2) 2.5 Hz
3) 9 Hz
4) 5 Hz
108. A short bar magnet is arranged with it North pole pointing geographical North. It is found that the horizontal component of Earth's magnetic induction $\left(\mathrm{B}_{\mathrm{H}}\right)$ is balanced by the magnetic induction of the magnet at a point which is at a distance of 20 cm from its center. The magnetic moment of the magnet is (if $\mathrm{B}_{\mathrm{H}}=4 \times 10^{-5} \mathrm{~Wb} \mathrm{~m}^{-2}$)
1) $3.2 \mathrm{~A}-\mathrm{m}^{2}$
2) $1.6 \mathrm{~A}-\mathrm{m}^{2}$
3) $6.4 \mathrm{~A}-\mathrm{m}^{2}$
4) $0.8 \mathrm{~A}-\mathrm{m}^{2}$
109. The plates in a parallel plate capacitor are separated by a distance ' d ' with air as the medium between the plates. In order to increase the capacity by 66%, a dielectric slab of dielectric constant ' 5 ' is introduced between the plates. What is the thickness of the dielectric slab?
1) $\frac{d}{4}$
2) $\frac{d}{2}$
3) $\frac{5 d}{8}$
4) d
110. Four charges of magnitude ' $-Q$ ' are placed at the four corners of a square an a change ' q ' is at its centre. If the system is in equilibrium the value of is
1) $-\frac{\mathrm{Q}}{4}(1+2 \sqrt{2})$
2) $\frac{Q}{4}(1+2 \sqrt{2})$
3) $-\frac{\mathrm{Q}}{2}(1+2 \sqrt{2})$
4) $\frac{Q}{2}(1+2 \sqrt{2})$
111. A battery of e.m.f 2.1 V and internal resistance 0.005Ω is shunted for 5 second by a wire of constant resistance 0.02Ω, mass 1 g and specific heat $0.1 \mathrm{cal} / \mathrm{g}^{0} / \mathrm{C}$. The rise in the temperature of the wire is
1) $10.7^{0} \mathrm{C}$
2) $21.4^{0} \mathrm{C}$
3) $107^{0} \mathrm{C}$
4) $214^{0} \mathrm{C}$
112. The current-voltage graph for a given metallic wire at two different temperatures T_{1} and T_{2} is shown in the figure. The temperatures T_{1} and T_{2} are related as
1) $T_{1}>T_{2}$
2) $T_{1}<T_{2}$
3) $T_{1}=T_{2}$
4) $T_{1}=2 T_{2}$

113. For a thermocouple the temperature of cold junction $\left(T_{C}\right)$, neutral temperature $\left(T_{n}\right)$ and temperature of inversion $\left(\mathrm{T}_{\mathrm{i}}\right)$ are $0^{\circ} \mathrm{C}, 285^{\circ} \mathrm{C}$ and $585^{\circ} \mathrm{C}$ respectively. If the temperature of cold junction is raised to $10^{\circ} \mathrm{C}$, then
1) $\mathrm{T}_{\mathrm{n}}=275^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{i}}=570^{\circ} \mathrm{C}$
2) $\mathrm{T}_{\mathrm{n}}=275^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{i}}=560^{\circ} \mathrm{C}$
3) $\mathrm{T}_{\mathrm{n}}=285^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{i}}=560^{\circ} \mathrm{C}$
4) $\mathrm{T}_{\mathrm{n}}=295^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{i}}=580^{\circ} \mathrm{C}$
114. A wire of length 6.28 m is bent into a circular coil of 2 turns. If a current of 0.5 A exists in the coil, the magnetic moment of the coil is, in $\mathrm{A}-\mathrm{m}^{2}$
1) $\frac{\pi}{4}$
2) $\frac{1}{4}$
3) π
4) 4π
115. A metal rod of length 2 m is rotating with an angular velocity of $100 \mathrm{radians} / \mathrm{sec}$ in a plane perpendicular to a uniform magnetic field of 0.3 T . The potential difference between the ends of rod is
1) 30 V
2) 40 V
3) 60 V
4) 600 V

Eamcet-2010 Medical (Physics)

116. A wire loop PQRSP is constructed by joining two semi-conductor coils of radii ' $r_{1}{ }^{\prime}$ and ' r_{2} ' respectively as shown in the figure. If the current flowing in the loop is ' i ', then the magnetic induction at the point ' O ' is
1) $\frac{\mu_{0} \mathrm{i}}{4}\left[\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right]$
2) $\frac{\mu_{0} \mathrm{i}}{4}\left[\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}\right]$
3) $\frac{\mu_{0} i}{2}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$
4) $\frac{\mu_{0} \mathrm{i}}{2}\left[\frac{1}{r_{1}}+\frac{1}{r_{2}}\right]$

117. The threshold frequency of the metal of the cathode in a photoelectric cell is $1 \times 10^{15} \mathrm{~Hz}$. When a certain beam of light is incident on the cathode, it is found that a stopping potential ' 4.144 V ' is required to reduce the current to zero. The frequency of the incident radiation is ($\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}$)
1) $2.5 \times 10^{15} \mathrm{~Hz}$
2) $2 \times 10^{15} \mathrm{~Hz}$
3) $4.144 \times 10^{15} \mathrm{~Hz}$
4) $3 \times 10^{16} \mathrm{~Hz}$
118. The surface of a metal has work function 2.66 eV . This is illuminated with photons of wavelength 450 nm . The de Broglie wavelength of the emitted photoelectrons is (Mass of electron $=9 \times 10^{-31} \mathrm{~kg}$)
1) $2.045 \times 10^{-9} \mathrm{~m}$
2) $4.09 \times 10^{-9} \mathrm{~m}$
3) $8.18 \times 10^{-9} \mathrm{~m}$
4) $1.02 \times 10^{-9} \mathrm{~m}$
119. If 200 MeV of energy is released in the fission of 1 nucleus of ${ }_{92} \mathrm{U}^{235}$, the number of nuclei that undergo fission to produce energy of 10 kwh in one second.
1) 11.25×10^{18}
2) 22.5×10^{17}
3) 11.25×10^{17}
4) 22.5×10^{18}
120. In the figures shown below.

1) In both fig. (a) and fig. (b) the diodes are forward biased
2) In both fig. (a) and fig. (b) the diodes are reverse biased
3) In fig. (a) the diode is forward biased and in fig. (b), the diode is reverse biased
4) In fig. (a) the diode is reverse biased and in fig. (b), it is forward biased

81$) \mathbf{2}$	$82) \mathbf{4}$	$83) \mathbf{2}$	$84) \mathbf{1}$	$85) \mathbf{1}$	$86) \mathbf{2}$	$87) \mathbf{1}$	$88)$	$\mathbf{4}$	$89) \mathbf{1}$	$90) \mathbf{3}$	
91$) \mathbf{3}$	$92)$	$\mathbf{2}$	$93) \mathbf{3}$	$94) \mathbf{1}$	$95)$	$\mathbf{1}$	$96) \mathbf{3}$	$97) \mathbf{2}$	$98) \mathbf{2}$	$99) \mathbf{3}$	$100) \mathbf{2}$
101$) \mathbf{4}$	$102) \mathbf{2}$	$103) \mathbf{2}$	$104) \mathbf{2}$	$105) \mathbf{3}$	$106) \mathbf{4}$	$107) \mathbf{4}$	$108) \mathbf{1}$	$109) \mathbf{2}$	$110) \mathbf{2}$		
111$) \mathbf{4}$	$112) \mathbf{2}$	$113) \mathbf{3}$	$114) \mathbf{1}$	$115) \mathbf{3}$	$116) \mathbf{1}$	$117) \mathbf{2}$	$118) \mathbf{2}$	$119) \mathbf{3}$	$120) \mathbf{3}$		

EAMCET-2010 MEDICAL-CHEMISTRY

121. The radial probability distribution curve obtained for an orbital wave function (ψ) has 3 peaks and 2 radial nodes. The valence electron of which one of the following metals does this wave function (ψ) correspond to ?
1) Cu
2) Li
3) K
4) Na
122. In a hydrogen atom, the electron is at a distance of of 4.768 A from the nucleus. The angular momentum of the electron is
1) $\frac{3 h}{2 \pi}$
2) $\frac{\mathrm{h}}{2 \pi}$
3) $\frac{h}{\pi}$
4) $\frac{2 h}{\pi}$
123. The incorrect order of second ionization energies in the following is
1) $\mathrm{Rb}>\mathrm{K}$
2) $\mathrm{Na}>\mathrm{Mg}$
3) $\mathrm{Cr}>\mathrm{Mn}$
4) $S>P$
124. The correct order of magnitude of bond angles among the compounds $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ is
1) $\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}$
2) $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CH}_{4}$
3) $\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}$
4) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CH}_{4}$
125. Molecular orbital theory was proposed by
1) Lewis
2) Muliken
3) Slater
4) Pauling
126. 0.14 g of an element on combustion gives 0.28 g of its oxide. What is that element ?
1) Nitrogen
2) Carbon
3) Fluorine
4) Sulphur
127. Equal weights of methane and oxygen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by oxygen is
1) $\frac{1}{2}$
2) $\frac{2}{3}$
3) $\frac{1}{4}$
4) $\frac{1}{3}$
128. Which one of the following 1.0×10^{-3} molal aqueous solutions has the highest boiling point ?
1) Aluminium (III) chloride
2) Lead (II) nitrate
3) Sodium chloride
4) Magnesium nitrate
129. What is the volume of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ required in litres to neutralize completely 1 litre of a solution containing 20 g of NaOH ?
1) 5.0
2) 0.5
3) 2.5
4) 10.0
130. If the solution of copper sulphate in which a copper rod is immersed, is diluted 100 times, what is the change in electrode potential (Reduction) ?
1) Increases by 29.5 mV
2) Decreases by 29.5 mV
3) Increases by 59.0 mV
4) Decreases by 59.0 mV
131. What is the e.m.f. of the cell for the reaction $\mathrm{Fe}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Fe}$? Given that $\mathrm{E}^{\mathrm{Zn}\left|\mathrm{Zn}^{2+}(1.0 \mathrm{M})\right|} 0=0.76 \mathrm{~V}$ and $\mathrm{E}_{\left|\mathrm{Fe}^{2+}(1.0 \mathrm{M})\right|}^{0}=0.41 \mathrm{~V}$
1) 1.17 V
2) 0.35 V
3) -1.17 V
4) -0.35 V
132. A crystalline solid substance has a density of $10 \mathrm{~g} / \mathrm{cm}^{3}$ and the length of the edge of the unit cell (FCC) is 0 20 A. How many number of atoms are present in 200 grams of the solid?
1) 2×10^{23}
2) 1×10^{26}
3) 1×10^{25}
4) 5×10^{27}

Eamcet-2010 Medical (Chemistry)

133. For the reaction $\mathrm{A}+3 \mathrm{~B} \rightarrow 2 \mathrm{C}+\mathrm{D}$, which one of the following is not correct?
1) Rate of disappearance of $A=$ Rate of formation of D
2) Rate of formation of $\mathrm{C}=\frac{2}{3} \times$ Rate of disappearance of B
3) Rate of formation of $D=\frac{1}{3} \times$ Rate of disappearance of B
4) Rate of disappearance of $\mathrm{A}=2 \times$ Rate of formation of C
134. What is the effect of a ten-fold increase in pressure on K_{p} in the reaction $\mathrm{N}_{(2)(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$ at equilibirum ?
1) A ten-fold increase
2) A ten-fold decrease
3) No change
4) Equal to K_{C}
135. Assertion (A) :According to Lowry-Bronsted theory, a subtance can function as an acid as well as a base Reason (R): Acid reacts with a base to produce a salt.

The correct answer is

1) Both A and R are true and R explains A
2) Both A and R are true and R does not explains A
3) A is true, R is false \quad 4) A is false, R is true
136. Heat of formation of CO and CO_{2} are $-94.0 \mathrm{kcal} / \mathrm{mole}$ respectively. What is the heat of combustion of CO in kcals ?
1) +26.4
2) 120.6
3) -67.6
4) 135.2
137. What is the emulsifier in milk ?
1) Albumin
2) Soap
3) Gelatin
4) Caesin
138. Which of the following statements is incorrect?
1) $\mathrm{H}_{2} \mathrm{O}_{2}$ has weak acidic property
2) $\mathrm{H}_{2} \mathrm{O}_{2}$ has weak basic property
3) $\mathrm{H}_{2} \mathrm{O}_{2}$ can act as oxidising agent
4) $\mathrm{H}_{2} \mathrm{O}_{2}$ can act as a reducing agent
139. Match the following

List - I

A) Dolomite
B) Fluorapatite
C) Phenacite
D) Celestite

List - II

I) CaCO_{3}
II) $2 \mathrm{BeO} \cdot \mathrm{SiO}_{2}$
III) SrSO_{4}
IV) $\mathrm{CaCO}_{3} \cdot \mathrm{MgCO}_{3}$
V) $3 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{CaF}_{2}$

The correct answer is

	$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$		$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$
1)	IV	V	III	II	$2)$	V	IV	II	III
$3)$	IV	V	I	II	$4)$	IV	V	II	III

140. Aluminium metal becomes passive in
1) conc. HNO_{3}
2) dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$
3) very dil. HNO_{3}
4) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
141. A and B are the compounds of carbon. A on passing over red hot coke is converted to B. Then A and B are respectively
1) $\mathrm{Co}, \mathrm{CO}_{2}$
2) $\mathrm{CO}_{2}, \mathrm{CO}$
3) $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$
4) $\mathrm{CCI}_{4}, \mathrm{CHCl}_{3}$

Eamcet-2010 Medical (Chemistry)

142. In $\mathrm{P}_{4} \mathrm{O}_{10}$, the numbetr of oxygen atoms bonded to each phosphorus atom is
1) 3
2) 4
3) 5
4) 6
143. The oxidation number of sulphur in $\mathrm{S}_{8}, \mathrm{SO}_{2}$ and $\mathrm{H}_{2} \mathrm{~S}$, respcectively are
1) $0,+6,-2$
2) $0,+4,-2$
3) $0,+1,+2$
4) $0,+1,-2$
144. The order of bond energies in halogen molecules is
1) $\mathrm{F}_{2}<\mathrm{Cl}_{2}<\mathrm{Br}_{2}<\mathrm{I}_{2}$
2) $\mathrm{F}_{2}>\mathrm{Cl}_{2} \mathrm{Br}_{2}>\mathrm{I}_{2}$
3) $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$
4) $\mathrm{Cl}_{2}>\mathrm{F}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
145. The shape of XeF_{6} is
1) Pentagonal bipyramidal
2) Square planar
3) Octahedral
4) Distrorted octahedral
146. One mole of $\mathrm{CoCl}_{3} . \mathrm{YNH}_{3}$ complex compound on complete ionisation in water produces thre moles of ions. If one chloride satisties both primary and secondary velencies of cobalt ion, the value of Y is
1) 3
2) 4
3) 5
4) 6
147. The process used in the refining of aluminium and zinc metals are repsectively
1) Hoop's process and fractional distillation
2) Hoop's process and cupellation
3) Poling and fractional distillation
4)Cupellation and fractional distillation
148. Ozone layer is present in
1) Troposphere
2) Stratosphere
3) Mesosphere
4) Thermaosphere
149. The IUPAC name of
1) 4-ethyl decane
2) 3-propyl nonane
3) 3-hexyl hexane
4) 4-hexyl hexane

150. The product obtained when propene undergoes addition reaction with HBr in thepresence of benzoyl peroxide is
1) 1-bromopropane
2) 2-bromopropane
3) 1, 2-dibromopropane
4) 2, 2-dibromopropane
151. Which one of the following compound is formed when nitrobenzene is treated with bromine in the presence of ferric ion?
1) m-bromonitrobenzene
2) o-bromonitrobenzene
3) p-bromonitrobenzene
4) mixture of o-bromonitrobenzenes
152. Which one of the following not having two chiralcentres ?
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}(\mathrm{Br})-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$
2) $\mathrm{H}_{3} \mathrm{C}-\left(\mathrm{CH}\left(\mathrm{NH}_{2}\right)-\mathrm{CH}(\mathrm{Br})-\mathrm{CH}_{3}\right.$
3) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}\left(\mathrm{NH}_{2}\right)-\mathrm{CH}(\mathrm{Cl})-\mathrm{CH}_{3}$
4) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}\left(\mathrm{NH}_{2}\right)-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
153. Chloroform when heated with silver powder gives
1) CH_{4}
2) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$
3) $\mathrm{CH}=\mathrm{CH}$
4) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
154. Which one of the following compounds in steam distillable ?
1) p-nitrophenol
2) o-bromophenol
3) o-cresol
4) o-nitrophenol
155. Which one of the following is one of the cross end products formed when a mixture of acetone and acetaldehyde is heated after treating with aqueous sodium hydroxide ?
1) $\mathrm{s}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}$
2) $\left(\mathrm{Ch}_{3}\right) \mathrm{C}=\mathrm{CHCOCH}_{3}$
3) $\mathrm{Ch}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$
4) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CO}-\mathrm{CH}_{3}$

Eamcet-2010 Medical (Chemistry)

156. What are A, B and C in the following reactions ?
1) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na} \xrightarrow{\text { Sodalime } / \Delta} \mathrm{A}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \xrightarrow{\mathrm{LiAlH}_{4}} \mathrm{~B}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na} \xrightarrow{\text { Kolbe'selectrolysis }} \mathrm{C}$

$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$
1) $\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	CH_{4}
2) CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$\mathrm{C}_{2} \mathrm{H}_{6}$
3) $\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	$\mathrm{C}_{3} \mathrm{H}_{8}$
4) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{2} \mathrm{H}_{6}$

157. A, B and C in the following reactions ?

A

1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{NHC}_{6} \mathrm{H}_{5}$
2) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{N}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}$
3) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{N}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}$
4) $\mathrm{C}_{6} \mathrm{H}_{5}-\stackrel{\stackrel{\mathrm{OH}}{\mathrm{C}} \mathrm{C}}{\mathrm{C}}-\mathrm{NH}-\mathrm{C}_{6} \mathrm{H}_{5} \quad \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NC}$
158. 1, 3-Butadiene and styrene on polymerisation give
1) Bakelite
2) Terylene
3)Buna-S
3) Teflon
159. Choose the correct statement from the following
1) All amino acids have comon isoelectric point
2) All naturally occuring α-amino acids optically acitive except glycine
3) At $\mathrm{pH}=0$ all amino acids are present as their anions
4) In strongly basic solutions, all amino acids are present as their cations
160. Aspirin is acetyl salicylic acid; the pair of functional groups present in the compound is
1) Hydroxyl, ester
2) Carboxylic acid, hydroxyl
3) Carboxylic acid, keto
4) Carboxylic acid, ester

121$) \mathbf{4}$	$122) \mathbf{1}$	$123) \mathbf{1}$	$124) \mathbf{1}$	$125) \mathbf{2}$	$126) \mathbf{4}$	$127) \mathbf{4}$	$128) \mathbf{1}$	$129) \mathbf{3}$	$130) \mathbf{4}$
131$) \mathbf{2}$	$132) \mathbf{3}$	$133) \mathbf{4}$	$134) \mathbf{3}$	$135) \mathbf{2}$	$136) \mathbf{3}$	$137) \mathbf{4}$	$138) \mathbf{2}$	$139) \mathbf{4}$	$140) \mathbf{1}$
141$) \mathbf{2}$	$142) \mathbf{2}$	$143) \mathbf{2}$	$144) \mathbf{3}$	$145) \mathbf{4}$	$146) \mathbf{3}$	$147) \mathbf{1}$	$148) \mathbf{2}$	$149) \mathbf{1}$	$150) \mathbf{1}$
151$) \mathbf{1}$	$152) \mathbf{4}$	$153) \mathbf{3}$	$154) \mathbf{4}$	$155) \mathbf{1}$	$156) \mathbf{2}$	$157) \mathbf{2}$	$158) \mathbf{3}$	$159) \mathbf{2}$	$160) \mathbf{4}$

