1.	Study the follo	wing l	ete						
1.	List – I	wingi	1313.			List –	п		
	A) The oldest h	and a	n aari	oulturo			bert Ho	oko	
	B) Micrograph		n agi n	culture		-	merari		
	<i>,</i> 0 1			nuclustion i	n nlanta				ala
	C) Description		-	-	in plants		an Leeu		UCK
	D) Role of chro	omoso	mes in	heredity			arasara		
						V) Su	tton an	d Bovei	ri
	The correct ma			_			_		_
	Α	B	С	D		Α	В	С	D
	1) II	IV	III	V	2)	IV	III	V	II
	3) II	III	Ι	V	4)	IV	Ι	Π	V
2.	The following J	plants	are de	void of some	e vital org	ans. Ar	range tl	nese in t	he order of absence of root,
	stem, leaf, flow	er and	l fruit,	respectively	7				
	I) Rafflesia		II)	Equisetum		III) C	eratopl	nyllum	IV) Gnetum
	V) Taeniophyll	lum		-			-	•	
	The correct or								
	1) V, I, III, II, IV		2)	II, IV, I, III, ^v	V	3) L II	II, V, IV,	П	4) III, V, I, II, IV
3.	· · · · · · · · · · · · · · · · · · ·					, .			sically similar to <i>Eryngium</i> ,
		_	-	_			-		rive at one of the following.
	1) Musa	nu ste		Brinjal	ci cimatio		ory lilly	ig to all	4) Mango
4	,	in a li	,	Dillijai		5)010	ny miy		4) Mango
4.	Study the follo	wing i	ISIS.						T : TT
	$\underline{\text{List} - I}$								$\underline{\text{List} - \text{II}}$
	A) Cohesion and	-		-		-			I) Citrus
	B) Cohesion of			•	into bund	lles			II) Cucurbita
	C) Adhesion of			—					III) Allium
	D) Adhesion of	fstame	ens to s	sepals					IV) Grevillea
									V) Helianthus
	The correct ma	atch is							
	Α	B	С	D		Α	В	С	D
	1) V	II	IV	III	2)	IV	Ι	Π	V
	3) V	II	IV	III	4)	V	Ι	Ш	IV
5.	From the follow	wing, i	dentify	y the plants	having in	loresce	nces wi	th male	, female and sterile flowers.
	I) Casuarina	0,		Vernonia	C		olocasia		IV) Ficus
	1) I, II		,	II, III		3) III,			4) I, IV
6.	· · ·	reak a		,	mber of n	, ,		he num	ber of carpels are found in
••	I) Aristolochia			Datura			olichos		IV) Abelmoschus
	1) I, II		,	II, III		з) I, Г			4) III, IV
7.	Assertion(A)	In <i>Erit</i>			a saa is dag			cnorio t	
/•									
									formation of an embryo sac.
	1) Both A and R		ie and	R explains A	,				nd R does not explains A
~	3) A is true, R is				,	A is fals			
8.		_			r of Smila	x, fema	le flowe	r of Rus	scus, modified reproductive
	shoots of <i>Scilla</i>	and T	-						
	1) 4 : 3 : 5 : 7		2)	7:5:4:3		3) 7 :	3:5:4		4) 4 : 7 : 5 : 4
9.	The ratio of t	he coh	orts o	of the first t	wo subcla	asses of	Dicoty	ledona	e in Bentham and Hooker
	classification is								
	1) 1 : 1		2)	2:3		3) 5 :	7		4) 3 : 2
									Page No 1

EAMCET-2010 MEDICAL-BOTANY

Eam 10.	cet-201 Asser		•	• ·	c system of cla	assificati	on are c	onside	red as n	ost-Darwinian.	
			•	0	•				-	n of Species'.	
					R explains A					and R does not explains A	
	,		is false		1	· · ·	A is fals			Ĩ	
11.	Identi	ify the <i>t</i>	<i>rue</i> stat	ement	in the followi	· · · · · ·		ŗ			
	1) Eac	h nucle	osome o	consists	of a core of f	ive types	of nine h	nistone	nolecul	es	
					d synthesis of						
	,		•		contains two u		-	1			
					me contains th	-		vl transf	erase		
12.					found in	j	· · · · · · · ·	,			
		ototene		•	Zygotene		3) Pac	hytene		4) Diplotene	
13.	· •		135 hvd	,		en two si	,	•	oment	of DNA double helix whi	ch
10.			-	-	gen bases, wh				5		,
	1) 19.		Juanni	-	190.4 A ⁰		3) 19(-		4) 190.4 nm	
14.	<i>,</i>		followi		ements relat	ed to plar	/		e true ?	() 190.1 mil	
1-10				-	<i>ria</i> have tricl	-		lui c ui v	cnuc.		
		•			ssess cytopla			e115			
		U		-	ot root are ca				on		
		-	•		t yet perform	-			JII		
	1) I, II		KS Stom		II, III	is Sascou	3) III,	_		4) II, IV	
15.	, · ·		nlant ir		,	ial walls	, ,		re evce	ssively thickened but radi	al
10.		are thi	_	i winci	the tangent	iui wuiis		cytes a		ssivery unexched but ruu	uı
		nstera		2)	Cucurbita		3) Lao	rtuca		4) Eupatorium	
16.	,		romnac		anged fundai	mental tie	,		d in	1) Euptrontum	
10.		-	of <i>Pteris</i>	-	ingen fundu	incircur th		dulla of		em	
	/		of Fund				,			l of <i>Nerium</i>	
17.			lowing				1) / 10	uniui iii	coopity1		
1/1	<u>List –</u>		io wing i	115050			<u>List –</u>	п			
			yllous p	lant				<u> </u>	2		
	· · · ·		iout roc				I) We	-	,		
	,				e leaves			agittario	7		
			ı succul	-				ribulus	r		
	D)IR		i succu		<i>J</i> U 3		· ·	ctoria re	oia		
	The c	orrect i	match is	R			•) • 4		zu		
	The e	A	B B	C C	D		A	В	С	D	
	1)	Ш	П	V V	I I	2)	л Ш	IV	С П	I	
	3)	I	N V	, Ш	П	2) 4)	III	I	П	V	
18.			v lowing		ш		111	1	11	v	
10.	<u>List –</u>		lowing	11515.			<u>List –</u>	Π			
			naped le	OVOG				otropis			
			surface					eratoph	vIIIIm		
		-	nd spor		iolo			otamog			
		ssected	_	igy per	loie			allisner			
	D) DR	secteu	leaves					ichhorn			
	The	orroot i	match is	a			V) El	cnnorn	uu		
	i ne c	A	natch B	s C	D		A	В	С	D	
	1)	A III	р IV	L I	D II	2)	A IV	Б I	v v	D II	
	1) 3)	III V	I V I	I II	II III	2) 4)	IV IV	л П	v V	II III	
	5)	v	I	ш	111	4)	1 V	ш	v	111 Due - N	•

	cet-2010		•	• /									
19.	List –		owing li	ISUS.			List –	т					
		<u>1</u> I. Morg	nan						torm (Genetics			
		. Mend	-				· ·	nkage		Genetics			
	\mathbf{C}) Bat						· ·	Thecker	board				
	,		C. Punn	eft				aws of					
	D) 110ş	Sillara					-	utation		.,			
	The co	orrect n	natch is				() = = =						
		Α	В	С	D		Α	В	С	D			
	1)	III	IV	Ι	Π	2)	Π	IV	Ι	III			
	3)	Ι	Π	V	IV	4)	IV	Ш	II	Ι			
20.					tations are wie	•							
			•		emical mutag	gens cau	se genet	tic varia	ability	in a population and produce			
	•		e charac										
	,			ie and	R explains A					and R does not explains A			
	3) A is t						A is fals						
21.		-			formed in a	100 – co	elled fil	ament	of <i>Spir</i>	ogyra affinis if all cells are			
		ed in co	onjugati										
	1) 99			2)			3) 49			4) 1			
22.		•	orrect s	equenc	e of the stages	s in the li	fe cycle	e of <i>Rhiz</i>	<i>copus</i> a	fter the reduction division of			
	zygosp												
		•	-	-	prangium \rightarrow g	-		•					
		-	-	-	pres \rightarrow germ s			-					
					$m \rightarrow \text{germ spo}$								
22		-		-	$m \rightarrow \text{germ spot}$	rangium	\rightarrow geri	m spore	S				
23.	-		owing li	ISTS.			T -4	тт					
	$\underline{\text{List}}$	_	ahaaan		E	<u>List – II</u> D Two nucleated							
			chegon		Funaria Ptoris	I) Two nucleated							
	· ·		l cell in		rieris	II) Two celled III) Zero							
			l cells i		¢		,		cal rou	rs of cells			
	D) Net	.K Calla		I Cycu	3					ws of cells			
	The co	rrect n	natch is				•)10			ws of cens			
	ine eo	A	B	С	D		Α	В	С	D			
	1)	III	IV	Ш	V	2)	IV	V	I	Ш Ш			
	3)	III	IV	I	Ĭ	4)	IV	Ĭ	V	I			
24.	,				Cycas is	• • •	1,		•	-			
					ollen tube are i	involved	in fertil	ization					
			-	-	urs before fertil								
		-	ains poll										
	,		-		t found in seeds	S							
25.					ations and ide		<i>rrect</i> m	atches.					
	-		_		phyte – Miner	-							
			-	_	prophyte – Bi								
			-		ciens – Saproj	-		Engine	ering				
					orus – Parasite								
	1) I, II			2)	II, III		3) I, I	V		4) II, IV			
26.	The di	isease c	aused b	y the	virus having d	louble s	tranded	l nuclei	ic acid	with ribose sugar as genetic			
	materi				_					_			
	1) Toba	acco mo	osaic dis	ease			2) Cau	uliflowe	er mosa	ic disease			
	3) Dah	lia mos	aic disea	ise		4) Rice stunting disease							
										Page No 3			

Eamcet-2010 Medical (Botany)27. Study the following table and identify the *correct* sequence of cells which shows the path of water movement between them

	mover	nent be	tween t	them							
	<u>Cell</u>			<u>Os</u>	motic Potenti	ial (MPa)		<u>Pr</u>	essure	<u>Potential (MPa)</u>	
	Α				-0.95					0.40	
	В				-0.75					0.40	
	С				-0.85					0.25	
	D				-0.65					0.25	
		$\rightarrow R \rightarrow 0$	$\gamma \longrightarrow A$	2)		$\rightarrow A$	3) C	$\rightarrow R \rightarrow$	$A \rightarrow D$	4) $B \to D \to A \to C$	
28.										Na ⁺ ions out of the cell in salt	
201		nt plan						P 01001			
		-		(er 2)	Symporter An	tinorter	3) Ant	tinorter	Unipor	ter 4) Uniporter, Antiporter	
29.	· ·	the foll	• •	,	by inporter, 7 in	inponer	<i>5)1</i> m	uponer,	Cimpor	(i) (inporter, / intporter	
47.	<u>List –</u>		owing.		<u>st – II</u>						
	$\frac{115t -}{A}$				<u>si – 11</u> Cytochrome -	C Ovi	daga				
		lybdeni			•		uase				
	,	v	1111		IAA synthes	15					
	C) Co		_) Biotin						
	D) Ma	nganes	e) Dinitrogena						
			Oxygen evolv	ving comj	plex						
	The co	orrect m			D			р	a	5	
		Α	B	С	D		Α	B	С	D	
	1)	III	IV	Π	Ι	2)	IV	III	Ι	Ш	
	3)	III	IV	Ι	V	4)	IV	Ι	Π	V	
30.			atio of]		abscisic acid	and GA ₂₇					
	1) 6 : 3				5:3:4		3) 8 :			4) 4 : 3 : 5	
31.						rates in d	ecreas	ing ord	er of C	O ₂ molecules released when	
				of the	m is oxidized						
	I) Trip	almitin		II)	Oleic acid		III) T	riolein		IV) Malic acid	
	1) I, II	, IV, III		2)	III, IV, II, I		3) III,	I, II, IV	7	4) III, II, IV, I	
32.	Assert	ion(A)	The e	nergy 1	requirement f	for the for	matio	n of one	e hexos	e molecule is more in	
			Chlor	<i>ella</i> tha	an in Sugarca	ane.					
	Reasor	<u>n(R)</u> : T	he forn	nation	of phosphoen	ol pyruvi	c acid	from p	yruvic a	acid requires two ATP	
		m	olecule	es.							
	1) Both	A and I	R are tr	ue and	R explains A	2) E	Both A	and R a	re true a	and R does not explains A	
	3) A is	true, R i	s false			4) A	is fals	e, R is t	rue		
33.	Eight	molecu	les of a	n enzy	me solution is	s mixed w	ith 10	00 mole	ecules o	f the substrate in a reaction	
	mixtu	re. If it o	convert	ts 80%	of the substra	ate into pr	oduct i	in five r	ninutes	, then its turnover number is	
	1) 10			2)	15		3) 20			4) 60	
34.	Study	the foll	owing l	ists.							
	List –	I					<u>List –</u>	· II			
	A) Ox	idative	decarb	oxylati	on		I) Ca	rbonic	anhydr	ase	
	B) Cor	npetitiv	ve inhib	oition			II) M	alic enz	yme		
		tal ion a					III) P		•		
		ganic m			factor			eroxida	nse		
	, ,	2				V) Succinic dehydrogenase					
	The co	orrect m	atch is	5			.,			0	
	A B C D						Α	В	С	D	
	1)	II	I	V	IV	2)	V	П	III	I	
	3)	II	V	Ĭ	IV	4)	v	I	II	IV	
	-,		•	-	<u> </u>	•,	•	-		Page No 4	

	cet-2010		•	• ·		lated to must		h a si a a		9	
35.				-		elated to prot	•			:	
						A of gene are			e		
						s amino acid		g site			
						' site in ribos			• .•		
			ein fact		U	elps in recogn			ination		
	1) I, II			,	II, III	_	3) II, 1		_	4) I, IV	
36.										e during photosynthesis of a	
										phosphorylation during the	:
			f one m			se in aerobic	-		nen the	ratio of 'X' and 'Y' is	
27	1) 3 : 1 2) 5 : 2 3) 1 : 1 4) 2 : 3 Study the following lists. 3) 1 : 1 4) 2 : 3										
37.	-		owingi	ists.			I int	т			
	$\frac{\text{List}}{A}$		tion				$\underline{\text{List}}_{-}$		voriot	X 7	
	A) Mass selectionI) Co–10 rice varietyB) Pure line selectionII) Kufri red potato variety										
	-		ous mut						-	ican cotton variety	
				auon			-			c c	
	D) Clonal selection IV) Basmati rice variety V) GEB–24 rice variety										
	The co	orrect n	natch is	5			() 01				
		Α	В	С	D		Α	В	С	D	
	1)	Ш	Ι	V	Π	2)	III	V	Ι	II	
	3)	П	IV	III	V	4)	IV	Ι	III	II	
38.	Identi	fy the <i>c</i>	<i>orrect</i> c	ombin	ation of (the following	related	to reco	ombina	nt DNA technology	
	1) Ti p	lasmid -	-Artific	ially sy	nthesized	l plasmid					
	2) DN	A probe	– Radi	oactive	ly labelle	d double stran	ded DN	JA			
	3) Stic	ky ends	of DNA	A – Fac	ilitate the	e action of DN	A Ligas	se			
					entificatio	on of antibiotic	resista	nt gene			
39.	•		owing l	ists.							
	<u>List –</u>						<u>List –</u>				
	-		s rich S	SCP				naliella			
	B) Fox		1 64 1		D				muscar		
	-		e defici	ent SC	P		-		lipolyti		
	\mathbf{D}) Lys	sine ric	n SCP						iella mei		
	The or	rroot n	natch is				v) 1 v1 e	einyiopi	nuus me	ethylotrophus	
	The G	А	B	C	D		Α	В	С	D	
	1)	III	IV	I	V	2)	III	Ш	I	IV	
	3)	III	V	I	ĪV	2) 4)	I	IV	I	III	
40.						ragment show					
					-	C A G 3'			-		

1)	4	2)	4	3)	1	4)	4	5)	3	6)	3	7)	3	8)	1	9)	4	10)	1
11)	2	12)	3	13)	2	14)	3	15)	4	16)	2	17)	1	18)	2	19)	2	20)	3
21)	2	22)	1	23)	2	24)	4	25)	3	26)	4	27)	4	28)	4	29)	3	30)	3
31)	3	32)	4	33)	3	34)	3	35)	2	36)	1	37)	1	38)	3	39)	1	40)	4

II

3)

Ι

IV

III

EAMCET-2010 MEDICAL-ZOOLOGY

41.	Statement (S) : Populations of a species inhabiting different geographical areas are in a continuous process											
	of ada	ptation	to their	surroun	ding envi	ronments and	this lea	ds to the	e evoluti	ion of new species.		
	Reason	n (R) :	Geograp	hical ba	rriers obs	struct interbre	eding of	f populat	ions of	a species leading to reproduc-		
	tive is	olation	and evol	lution of	f new spe	cies.						
	1) Bot	h (S) an	d (R) ar	e not tr	ue		2) On	ly (S) is	true bu	t not (R)		
	3) Bot	h (S) ar	id (R) ar	e true b	ut (R) do	es not explain	(S)					
	4) Bot	h (S) ar	id (R) ar	e true a	nd (R) is	correct explai	nation to	o (S)				
42.	Which of the following statements are correct with regard to Deuterostomes?											
	(a) Th	e blasto	pore dev	velops i	nto anus i	in adult	(b) T	he blasto	pore de	evelops into mouth in adult		
	(c) Cle	eavage i	s radial	and ind	leterminat	e	(d) C	leavage	is spiral	and determinate		
	1) (a)	and (c)		2)	(a) and (b))	3) (b)	and (d)		4) (b) and (c)		
43.	Choose	e the ar	imal wh	nich exh	ibits the	following cha	racterist	ics:				
	(a) Ma	rine ha	bitat	(b)	Bilateral	symmetry wi	th ceph	alization				
	(c) Ha	emocoe	l as prir	ncipak b	ody cavit	у	(d) E	yes simil	ar to th	at of vertebrates		
	1) Jell	y fish		2)	Cuttle fisl	h	3) Sil	ver fish		4) Dog fish		
44.	Which	of the	followin	g is the	correct s	wquence of c	ell cycle	e?				
	The co	orrect ar	nswer is:									
	1) G ₁	\rightarrow G ₂ -	\rightarrow S \rightarrow N	A 2)	$S \rightarrow M -$	$\rightarrow G_2 \rightarrow G_1$	3) G	$_{1} \rightarrow S \rightarrow$	$G_2 \rightarrow D$	$\mathbf{M} 4) \ \mathbf{M} \rightarrow \mathbf{S} \rightarrow \mathbf{G}_2 \rightarrow \mathbf{G}_1$		
45.	Match	the typ	es of an	imal tis	sues giver	n under List I	with th	e parts/o	rgans ir	which they occur, given		
	under	List II:										
	<u>List I</u>						<u>List 1</u>	I				
	(Tissu	e)					(Part	/Organ)				
	(A) Sc	luamous	s epithel	ium			(I) W	alls of n	ose			
	(B) Hy	valine c	artilage				(II) E	Bowman's	s capsul	e		
	(C) Ad	lipose ti	ssue				(III) I	ris				
	(D) Sr	nooth n	nuscle				(IV) [•]	Yellow b	one ma	rrow		
							(V) E	lar pinna				
	The C	orrect m	natch is:									
		A	<u>B</u>	<u>C</u>	<u>D</u>		A	<u>B</u>	<u>C</u>	<u>D</u>		
	1)	V	Ι	IV	II	2)	V	IV	Ι	III		

4)

Π

IV

Ι

III

46. The plane that divides the body into right and left halves:

46.	The pla	the body	y into r	ight and le	it halves:									
	(1) Tra	insverse		(2)	Frontal			(3) Sa	gittal		(4) Radial			
47.	Match	the foll	owing:											
	List I							List II	[
	(A) Re	ticulopo	odia					(I) Lea	cithium					
	(B) Lo	bopodia	ì					(II) Co	ollozoui	n				
	(C) Fil	opodia						(III) C	Blobiger	ina				
	(D) Ax	copodia						(IV) C	Ceratium	l				
								(V) Entamoeba						
	The co	rrect ma	atch is:											
		<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>			<u>A</u>	<u>B</u>	<u>C</u>	D			
	1)	III	IV	II	I		2)	III	V	I	II			
48.	3) The fu	IV sion of	V	I of diss	III similar (grametes is	4) s. call	II	III	Ι	IV			
40.	1) Syn		pronucic		veoplasi		s can	3) Iso	oamv		4) Hologamy			
49.		•••	w which		•		in tl			host du	ring parasitic infection:			
	_	perplasia			Veoplasi				pertropl		4) Gigantism			
50.		the foll		,	Ĩ			, U		2	, ,			
	Parasi	te	-	Infe	ective S	tage		Diseas	se Caus	ed				
	(A) Pla	asmodiu	m vivax	(I) 3	ord stage	e larva		(a) Fil	ariasis					
	(B) Tae	enia sol	ium	(II)	Cystic s	stage		(b) Benign tertain malaria						
	(C) En	tamoeba	a histoly	tica (III)	Sporoz	zoite		(c) An	noebic	dysente	ry			
	(D) Wi	uchereri	a bancro	ofti (IV)	Cystic	ercus		(d) Taeniasis						
	The co	rrect ma	atch is:											
	(1)	A(III)) (b)	B(IV)	(d)	C(II) (c))	D(I)	(a)					
	(2)	A(III)) (b)	B(IV)	(d)	C(I) (c)		D(II)	(a)					
	(3)	A(IV) (a)	B(II)	(d)	C(I) (b)		D(III)) (c)					
	(4)	A(III)) (b)	B(IV)	(d)	C(I) (a)		D(II)	(c)					
51.	In pher	retima, s	septa are	absent	between	n some of	the s	segments	s. They	re:				
	The co	rrect an	swer is:											
	$1)\frac{1}{2},\frac{2}{3}$	$\frac{9}{10}, \frac{10}{11}$) 	$(2)\frac{1}{2}$	$,\frac{2}{3},\frac{3}{4},$	$\frac{9}{10}$		$(3)\frac{4}{5},\frac{4}{1}$	$\frac{9}{0}, \frac{10}{11}, \frac{10}{11}$	$\frac{14}{15}$	$4)\frac{1}{2},\frac{2}{3},\frac{8}{9},\frac{10}{11}$			
52.	In pheretima, the open type of nephridia are lo						ated	in these	segmen	nts:				
	1) 4th,	1) 4th, 5th and 6th2) 2nd to the last							3) 16th to the last4) 7th, 9th and 13th					

Eam 53.	The calls present in the		which contain symbiotic h	actoria that aunthoriza amina
55.	acids are:	e lat boules of cockfoach,	which contain symbiolic ba	acteria that synthesize amino
		2) Mucato autos	2) Opposites	(1) Unote celle
51	1) Trophocytes	2) Mycetocytes	3) Oenocytes	4) Urate cells
54.		oreceptor sensilla are press		
	1) Antenna, maxillary a		2) Labrum, maxillary	* *
	3) First, second and thin		4) Anal cerci and ped	
55.		and chewing mouth parts as		*
		bolus insects have biting a	0 11	parts in their larvae.
		correct and (R) is he corre	•	
		e correct and (R) is not the	•	
	(3) (S) is correct but (R)	C C	(4) (S) is wrong but (I	R) is correct.
56.		ving arthropods is viviparo		
	1) Palaemon	2) Palamnaeus	3) Pediculus	4) Periplaneta
57.	Shannon's index (H) rep			
	,	two randomly selected ind	lividuals of the same speci	es in a habitat
	2) Relaive abundance o	f each species		
	3) The probability that	two randomly selected indi	viduals in he habitat belon	ig to the same species
	4) Number of genes of	a specific trait that exist wi	ithin a population	
58.	The scientific name of I	Kashmiri stag is:		
	1) Sus salvanius		2) Grus leucogeranus	
	3) Cervus elephus hang	lu	4) Ailurus ochraceus	
59.	Select the animal from	the examples given below	which exhbits neoeny in it	s larval stage:
	1) Amphiuma	2) Typhlonectes	3) Ambystoma	4) Necturus
60.	Ductus Botalli connects	:		
	1) Two systemic arches		2) Pulmonary and sys	temic arches
	3) Systemic and carotid	arteries	4) Carotid and pulmor	nary arteries
61.	Which of he following	exhibit discontinuous distri	ibution?	
	1) Ratitae and Osteichth	nyes	2) Metatheria and Car	rinatae
	3) Dipnoi and Ratitage		4) Prototheria and Ure	odela
62.	The animal with epipub	ic bones and a chorioallont	toic placenta is :	
	1) Opossum rat	2) Koala bear	3) Marsupial bandico	ot 4) Opossum
63.	Arrage the correct seque	ence of enzymes which act	on food in different regio	ons of alimentary canal:
	(a) Pepsin	(b) Ptyalin	(c) Dipeptidase	(d) Carboxypeptidase
	The correct answer is:			
	1) (a) (b) (c) (d)	2) (b) (a) (d) (c)	3) (a) (d) (c) (b)	4) (b) (a) (c) (d)
64.	Number of oxygen mpl	ecules bound in a saturated	d haemoglobin molecule:	
	1) One	2) Two	3) Three	4) Four
65.	Mitral valve is:			
	1) Right atrio-ventricula	ur valve	2) Left atrio-ventricula	ar valve
	3) Eustachian valve		4) Spiral valve	
66.	Which of the following	is an autoimmune disorder	r?	
	1) Hypothyroidism	2) Acromegaly	3) Gigantism	4) Grave's disease

69

- 67. Which one of the following statements is not true with referene to the genes of eukaryotic animals?
 - 1) RNA polymerase allows the transcripotion of structural genes to synthesize a polycisdtronic m-RNA
 - 2) Many genes have stretches of nitrogen bases that code for amino acids and are called 'exons'
 - 3) Heterogenous nuclear RNA (hn RNA) is synthesized from split genes
 - 4) The bases that do not code for amino acids are called 'introns'

68. Match vertebral number and the corresponding region in rabbit:

	<u>List I</u>						<u>List I</u>	Ī		
	(A) Ce	ervical					(I) 16			
	(B) Th	oracic					(II) 7			
	(C) Ca	udal					(III) 3	or 4		
	(D) Sa	cral					(IV) 1	2 or 13		
	The co	orrect m	ath is:							
		<u>A</u>	<u>B</u>	<u>C</u>	D		<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>
	1)	IV	III	II	Ι	2)	II	IV	Ι	III
	3)	Ι	II	III	IV	4)	III	Ι	IV	II
).	Which	event o	of the 'a	ction po	tential' is in	ndicated by the	he letter	(A) in	the diag	ram?
	1) T. C.		r +					1	$\wedge B$	

1) Influx of \mathbf{K}^+	+50 mV
2) Efflux of Na ⁺	0 mV (A) C
3) Influx of Na ⁺	-50 mV -
4) Efflux of \mathbf{K}^+	-100 mV

70. Identify the 'place of hydrolysis of ATP' and the 'power stroke' in muscle contraction, in the picture given below:

The correct answer is:

1) (A) and (D) 2) (B) and (C) 3) (C) and (D)

71. The inability to regulate the concentration of sodium ions in the blood could be due to the improper functioning of one of the following

- 1) Adenohypophysis : It produces ACTH
- 3) Adrenal medulla : It produces epinephrine
- 2) Adrenal cortex : It produces epinephrine

4) (A) and (B)

4) Pars nervosa : It produces ADH

	cet-2010	Medic	al (Zoolo	ogy)									
72.	The Ma	acropha	ges pres	ent in th	e liver	are called							
	1) Mici	roglial	cells	2) H	Histiocy	tes	3) Lyr	nphocy	tes	4)	Kupffer	cells	
73.	A moth	er with	ı blood g	group 'B'	type ha	as a child with	blood gi	roup typ	e 'O'. V	Vhat is	the poss	sibility of th	ie
	genotyp	pes of t	hat motl	ner and t	father?								
	1) I ^a I ^a	(father) and I ^B	l ^o (mothe	er)		2) IAI	B (fathe	er) and	IBIB (n	other)		
	3) I ^a I ^o	(father)) and I ^B I	^o (mothe	r)		4) I ^B I ^O (father) and I ^A I ^O (mother)						
74.	Drumst	ick Ba	r bodies	are fou	nd in								
	1) All I	RBC of	females				2) All RBC of males						
	3) Som	e neutr	ophils o	f female	S		4) Son	ne neuti	ophils	of male	8		
75.	Match	the foll	owing in	n Drosop	ohila wi	th reference to	sex dete	erminati	on				
	List I						List II	[
	(Ratio	of X C	hromoso	mes to A	Autoson	nes) X/A	(Sex)						
	A) 0.5						1) Me	tafemal	e				
	B) 1.0						2) Metamale						
	C) 1.5						3) Male						
	D) 0.33	3					4) Intersex						
	E) 0.67	,					5) Fen	nale					
	1)	<u>A</u>	<u>B</u>	$\frac{\mathbf{C}}{2}$	<u>D</u>	<u>E</u>	2)	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>	
	1) 3)	3 1	1 4	2 2	4 5	5 3	2) 4)	3 2	5 3	1 1	2 4	4 5	
76.	Stateme	ent (S)	: The co	ncept of	surviva	l of the fittest	is centra	l to nat	ural sele	ection			
	Reason	(R) : l	Individua	als who	possess	advantageous	characte	rs to ad	apt to t	he envi	onment	have bette	r
	potentia	al for s	urvival										
	1) Only	v (S) is	true but	not (R)									
	2) Both	(S) an	d (R) ar	e true bu	ıt (R) is	not the correct	t explana	tion to	(S)				
	3) Both	(S) an	d (R) ar	e true an	d (R) is	the correct ex	planatior	n to (S)					
	4) Both	(S) an	d (R) ar	e not tru	e								
77.	Find th	e frequ	ency of	heterozy	gotes in	n a population	which e	xhibits 1	the Har	dy - We	inberg	equilibrium,	, if
	the free	quencies	s of the	two alle	les in th	ne population a	are 0.6 ar	nd 0.4					
	1) 0.80	1		2) (0.64		3) 0.4	8		4)	0.32		
78.	Haemo	poietic	stem ce	lls are									
	1) Totij	potent a	cells				2) Ple	uripoten	t and m	nultipote	ent cells		
	3) Unip	potent c	cells				4) Dif	ferentia	ted cells	5			

- 79. The application of Polymerase Chain Reaction is:
 - 1) to demonstrate DNA as genetic material
 - 2) to replicate specific DNA sequences at high temperatures
 - 3) to determine minerals in biological tissue
 - 4) to replicate RNA sequences at low temperatures
- 80. Match the following:

List I

List II

(Common Name)	(Scientific Name)
I) Cat fish	A) Clarias batrachus
II) Milk fish	B) Chanos chanos
III) White shrimp	C) Heteropneustes fossilis
IV) Grey mullet	D) Mugil cephalus
	E) Penaeus monodon
	F) Penaeus indicus

The correct match is

	Ī	II	III	IV		Ī	II	III	IV
1)	А	С	Е	D	2)	В	D	E	А
3)	А	В	F	D	4)	В	D	F	А

41) 4	42) 1	43) 2	44) 3	45) 3	46) 3	47) 2	48) 2	49) 2	50) 1
51) 2	52) 3	53) 2	54) 3	55) 1	56) 2	57) 2	58) 3	59) 3	60) 2
61) 3	62) 3	63) 2	64) 4	65) 2	66) 4	67) 1	68) 2	69) 3	70) 2
71) 2	72) 4	73) 3	74) 3	75) 2	76) 3	77) 3	78) 2	79) 2	80) 3

EAMCET-2010 MEDICAL-PHYSICS

81.	A body weig	ghs 22.42 gi	m and has a	measured v	olume of 4	4.7 cc.	The possib	le error in the	e measurement of
	mass and vo	olume are 0.	01 gm and	0.1 cc. The	n the max	imum e	error percent	age in the de	nsity will be
	1) 22%		2) 2.2%		3)	0.22%		4) 0.022	2%
82.	A man move	es 20 m No	rth, then 10	m east and	then $10\sqrt{2}$	$\overline{2}$ m So	uth–West, h	is displaceme	nt is
	1) 20 m No	orth	2) $10\sqrt{2}$	2 m North–V	West 3)	$10\sqrt{2}$	m South-Ea	ast 4) 10 m	North
83.	An electron	moving at a	speed of 5	x 10 ⁶ ms ⁻¹ i	s shot thro	ugh a s	heet of pape	r which is 2.1	x 10^{-4} cm thick.
	The electron	emerges fro	om the pape	r with speed	of 2 x 10 ⁶	⁵ ms ⁻¹ .	The time ta	aken by the el	ectron in seconds
	to pass throu	ugh the pap	er sheet is						
	1) 5 x 10^{-12}	2	2) 6 x 1	0 ⁻¹³	3)	3 x 10	-12	4) 5 x 1	0 ⁻¹³
84.	Match conse	ervation law	s in List–I v	with the prod	cesses in L	.ist–II.			
	<u>List – I</u>				Lis	<u>st – II</u>			
	A) Linear 1	momentum			I)	Elastic	collision		
	B) Angular			II)	Inelas	tic collision			
	C) Kinetic		III) No ex	ternal force				
	D) Total en			IV) No ex	ternal torqu	ie		
					V)	All pl	nysical proc	esses	
	The correct	<u>match is</u>							
	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>		<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>
	1) III	IV	Ι	V	2)	IV	III	Ι	V
	3) V	IV	II	Ι	4)		III	IV	Ι
85.			-		-	-		adius 'R' dep	ends on distance
	covered 'S' a				-	-	-		
	1) $\frac{2AS}{m} \left(1 - \frac{1}{m}\right)$	$(S^2)^{1/2}$	2AS	$(1 S^2)^{1/2}$		$2AS^2$		4) $\frac{2AS}{2}$	
	1) $\frac{1}{m}$	$\left(\frac{1}{R^2}\right)$	2) <u>m</u>	$\left(1-\frac{1}{R^2}\right)$	3)	mR		4) <u>m</u>	
86.	A sphere of	mass m mo	ving with co	onstant veloc	vity hits an	other st	ationary sph	ere of the sar	ne mass. If 'e' is
001	-		-		-			fter the collisi	
	1		1 -				-		
	1) $\frac{1}{e}$		2) $\frac{1-e}{1+e}$		3)	$\frac{e}{1+e}$		4) $\frac{e+1}{e}$	-
87.	Two particle	es A and B	initially at r	est move tov	wards each	other	under a mut	ual force of a	attraction. At the
	instant when	the velocity	y of A is V	and that of I	B is 2V, ve	elocity of	of centre of	mass of the s	yste is
	1) Zero		2) V		3)	2V		4) 3V	
88.	A car is trav	velling along	g a curved r	oad of radiu	is r. If the	coeffi	cient of fric	tion between	the tyres and the
	road is μ , the second secon	he car will s	skid if its sp	eed exceeds					
	1) $2\sqrt{\mu rg}$		2) $\sqrt{3\mu r}$	g	3)	$\sqrt{2\mu rg}$	- -	4) $\sqrt{\mu rg}$	- -
	v. U		v '	-				v. C	

89. PQR is a right angled triangular plate of uniform thickness as shown in the figure. If I₁, I₂ and I₃ are moments of inertia about PQ, QR and PR axes respectively, then

1)
$$I_3 < I_2 < I_1$$

2) $I_1 = I_2 = I_3$
3) $I_2 > I_1 > I_3$
4) $I_3 > I_1 > I_2$
 P
 3
 90^0
 Q
 4
 R

90. The radius of gyration of a solid sphere of radius R about a certain axis is also equal to R. If r is the distance between the axis and the centre of the sphere, then r is equal to

- 1) R 2) 0.5 R 3) $\sqrt{0.6}$ R 4) Zero
- 91. The period of revolution of Jupiter around the sun is 12 times the period of revolution of the earth around the sun. The distance between the Jupiter and sun is n times the distance between the earth and sun. Then the value n is
 - 1) $(144)^{3/2}$ 2) $(144)^{2/3}$ 3) $\sqrt[3]{144}$ 4) $\sqrt[4]{144}$
- 92. A mass M is suspended from a light spring. An additional mass m is added, displaces the spring further by a distance 'x'. Now the combined mass will oscillate with a period.

1)
$$T = 2\pi \sqrt{\frac{mg}{x(M+m)}}$$
 2) $T = 2\pi \sqrt{\frac{(M+m)x}{mg}}$ 3) $T = \frac{2\pi}{3} \sqrt{\frac{mg}{(M+m)x}}$ 4) $T = 2\pi \sqrt{\frac{(M+m)}{mgx}}$

- 93. A 4.0 m long copper wire of cross-sectional area 1.2 cm² is stretched by a force of 4.8 x 10^{3} N. If Young's modulus for copper is Y = 1.2 x 10^{11} N/m², the increase in length of wire and strain energy stored per unit volume are
 - 1) 1.32×10^{-4} m, 66 x 10^3 J 2) 132×10^{-4} m, 6.6 x 10^2 J
 - 3) 13.2×10^{-4} m, 6.6 x 10^3 J 4) 0.132×10^{-4} m, 66 x 10^4 J
- 94. A spherical liquid drop of diameter D breaks up to n identical spherical drops. If the surface tension of the liquid is ' σ ', the change in energy in this process is

1)
$$\pi \sigma D^2 \left(n^{1/3} - 1 \right)$$
 2) $\pi \sigma D^2 \left(n^{2/3} - 1 \right)$ 3) $\pi \sigma D^2 \left(n - 1 \right)$ 4) $\pi \sigma D^2 \left(n^{4/3} - 1 \right)$

95. A tank of height 5 m is full of water. There is a hole of cross-sectional area 1 cm² in its bottom. The volume of water that will come out from this hole per second is $(g = 10 \text{ m/s}^2)$

1)
$$10^{-3} \text{ m}^{3}/\text{s}$$
 2) $10^{-4} \text{ m}^{3}/\text{s}$ 3) $10 \text{ m}^{3}/\text{s}$ 4) $10^{-2} \text{ m}^{3}/\text{s}$

96. An ideal gas is initially at temperature T and volume V. Its volume is increased by ΔV due to an increase in temperature ΔT , pressure remaining constant. The physical quantity $\delta = \frac{\Delta V}{V\Delta T}$ varies with temperature as

- 97. The pressure P for a gas is plotted against its absolute temperature T for two different volumes V_1 and V_2 where $V_1 > V_2$ where $V_1 > V_2$. If P is plotted on y-axis and T on x-axis, then
 - 1) The curve for V_1 has greater slope than that for V_2
 - 2) The curve for V_2 has greater slope than that for V_1
 - 3) Both curves have same slope
 - 4) The curves intersect at some point other than T = 0
- 98. One mole of an ideal gas ($\gamma = 1.4$) is adiabatically compressed so that its temperature rises from 27^oC to 35^oC. The change in the internal energy of the gas is (R = 8.3 J.mol⁻¹ K⁻¹)
 - 1) 266 J 2) 166 J 3) 268 J 4) 168 J
- 99. A lead bullet of unknown mass is fired with a speed of 180 ms⁻¹ into a tree in which it stops. Assuming that in this process two third of heat produced goes into the bullet and one third into wood. The temperature of the bullet raises (Specific heat of lead = $0.120 \text{ Jg}^{-1} \text{ }^{0}\text{C}^{-1}$)
 - 1) 2) 3) 90° C 4) 100° C
- 100. A cylinder of radius 'R' made of material of coefficient of thermal conductivity 'k₁' is surrounded by a cylindrical shell of inner radius 'R' and outer radius 2R made of a material of coefficient of thermal conductivity 'k₂'. The two ends of the combined system are maintained at two different temperatures. There is no loss of heat across the cylindrical surface and the system is in the steady state. The effective coefficient of thermal conductivity of the system is

1)
$$k_1 + k_2$$
 2) $\frac{k_1 + 3k_2}{4}$ 3) $\frac{3k_1 + k_2}{4}$ 4) $\frac{k_1 k_2}{k_1 + k_2}$

101. A source of sound producing wavelength of 50 cm is moving away from stationary observer with 1/5th speed of sound. Then, what is the wavelength of sound heard by observer ?

- 1) 70 cm 2) 55 cm 3) 40 cm 4) 60 cm
- 102. A sound wave travels with a velocity of 300 ms⁻¹ through a gas. 9 beats are produced in 3 sec when two waves pass through it simultaneously. If one of the waves has 2m wavelength, the wavelength of the other wave is
 - 1) 1.98 m 2) 2.04 m 3) 2.00 m 4) 1.99 m
- 103. A ray of light travels from an optically denser medium towards rarer medium. The critical angle for the two media is 'C'. The maximum possible of deviation of the ray is

1)
$$\frac{\pi}{2} - C$$
 2) $\pi - 2C$ 3) 2C 4) $\frac{\pi}{2} + C$

104. The magnification produced by an astronomical telescope for normal adjustment is 10 and the length of the telescope is 1.1 m. The magnification, when the image is formed at least distance of distinct vision is
1) 6
2) 14
3) 16
4) 18

105. A thin prism of angle 6^0 made up of glass of refractive index 1.5 is combined with another prism made upof glass of refractive index 1.75 to produce dispersion without deviation. The angle of second prism is1) 7^0 2) 9^0 3) 4^0 4) 5^0

106. If the ratio of maximum and minimum intensities of an interference pattern is 36 : 1, then the ratio of amplitudes of the two interfering waves will be

 1) 3:7
 2) 7:4
 3) 4:7
 4) 7:5

107. A short magnet oscillating in vibration magnetometer with a frequency 10 Hz. A downward current of 15 A is established in a long vertical wire placed 20 cm to the West of the magnet. The new frequency of the short magnet is (The horizontal component of earth's magnetic field is 12 μT)

1) 4 Hz 2) 2.5 Hz 3) 9 Hz 4) 5 Hz

108. A short bar magnet is arranged with it North pole pointing geographical North. It is found that the horizontal component of Earth's magnetic induction (B_H) is balanced by the magnetic induction of the magnet at a point which is at a distance of 20 cm from its center. The magnetic moment of the magnet is (if $B_H = 4 \times 10^{-5}$ Wb m⁻²)

1)
$$3.2 \text{ A}-\text{m}^2$$
 2) $1.6 \text{ A}-\text{m}^2$ 3) $6.4 \text{ A}-\text{m}^2$ 4) $0.8 \text{ A}-\text{m}^2$

109. The plates in a parallel plate capacitor are separated by a distance 'd' with air as the medium between the plates. In order to increase the capacity by 66%, a dielectric slab of dielectric constant '5' is introduced between the plates. What is the thickness of the dielectric slab ?

1)
$$\frac{d}{4}$$
 2) $\frac{d}{2}$ 3) $\frac{5d}{8}$ 4) d

110. Four charges of magnitude '- Q' are placed at the four corners of a square an a change 'q' is at its centre. If the system is in equilibrium the value of is

1)
$$-\frac{Q}{4}(1+2\sqrt{2})$$
 2) $\frac{Q}{4}(1+2\sqrt{2})$ 3) $-\frac{Q}{2}(1+2\sqrt{2})$ 4) $\frac{Q}{2}(1+2\sqrt{2})$

111. A battery of e.m.f 2.1 V and internal resistance 0.005Ω is shunted for 5 second by a wire of constant resistance 0.02Ω , mass 1 g and specific heat $0.1 \text{ cal/g}^0/\text{C}$. The rise in the temperature of the wire is 1) 10.7^0C 2) 21.4^0C 3) 107^0C 4) 214^0C

112. The current-voltage graph for a given metallic wire at two different temperatures T_1 and T_2 is shown in the figure. The temperatures T_1 and T_2 are related as T_1

1) $T_1 > T_2$

2)
$$T_1 < T_2$$

- 3) $T_1 = T_2$
- 4) $T_1 = 2T_2$
- 113. For a thermocouple the temperature of cold junction (T_C) , neutral temperature (T_n) and temperature of inversion (T_i) are 0°C, 285°C and 585°C respectively. If the temperature of cold junction is raised to 10°C, then

1)
$$T_n = 275^0C$$
 and $T_i = 570^0C$ 2) $T_n = 275^0C$ and $T_i = 560^0C$

3)
$$T_n = 285^{0}C$$
 and $T_i = 560^{0}C$
4) $T_n = 295^{0}C$ and $T_i = 580^{0}C$

114. A wire of length 6.28 m is bent into a circular coil of 2 turns. If a current of 0.5A exists in the coil, the magnetic moment of the coil is, in $A-m^2$

1) $\frac{\pi}{4}$ 2) $\frac{1}{4}$ 3) π 4) 4π

115. A metal rod of length 2m is rotating with an angular velocity of 100 radians/sec in a plane perpendicular to a uniform magnetic field of 0.3 T. The potential difference between the ends of rod is

1) 30 V 2) 40 V 3) 60 V 4) 600 V

116. A wire loop PQRSP is constructed by joining two semi-conductor coils of radii r_1' and r_2' respectively as shown in the figure. If the current flowing in the loop is 'i', then the magnetic induction at the point 'O' is

117. The threshold frequency of the metal of the cathode in a photoelectric cell is 1 x 10¹⁵ Hz. When a certain beam of light is incident on the cathode, it is found that a stopping potential '4.144 V' is required to reduce the current to zero. The frequency of the incident radiation is (h = 6.63 x 10⁻³⁴ J-s)
1) 2.5 x 10¹⁵ Hz
2) 2 x 10¹⁵ Hz
3) 4.144 x 10¹⁵ Hz
4) 3 x 10¹⁶ Hz

118. The surface of a metal has work function 2.66 eV. This is illuminated with photons of wavelength 450 nm. The de Broglie wavelength of the emitted photoelectrons is (Mass of electron = $9 \times 10^{-31} \text{ kg}$) 1) 2.045 x 10⁻⁹ m 2) 4.09 x 10⁻⁹ m 3) 8.18 x 10⁻⁹ m 4) 1.02 x 10⁻⁹ m

119. If 200 MeV of energy is released in the fission of 1 nucleus of ${}_{92}U^{235}$, the number of nuclei that undergo fission to produce energy of 10 kwh in one second.

1) 11.25×10^{18} 2) 22.5×10^{17} 3) 11.25×10^{17} 4) 22.5×10^{18}

120. In the figures shown below.

- 1) In both fig. (a) and fig. (b) the diodes are forward biased
- 2) In both fig. (a) and fig. (b) the diodes are reverse biased
- 3) In fig. (a) the diode is forward biased and in fig. (b), the diode is reverse biased
- 4) In fig. (a) the diode is reverse biased and in fig. (b), it is forward biased

81) 2	82) 4	83) 2	84) 1	85) 1	86) 2	87) 1	88) 4	89) 1	90) 3
91) 3	92) 2	93) 3	94) 1	95) 1	96) 3	97) 2	98) 2	99) 3	100) 2
101) 4	102) 2	103) 2	104) 2	105) 3	106) 4	107) 4	108) 1	109) 2	110) 2
111) 4	112) 2	113) 3	114) 1	115) 3	116) 1	117) 2	118) 2	119) 3	120) 3

EAMCET-2010 MEDICAL-CHEMISTRY

121.	The radial probability dis	tribution curve obtained for	an orbital wave function(ψ) has 3 peaks and 2 radial		
	nodes. The valence electro	on of which one of the follow	ving metals does this wave	function (ψ) correspond to ?		
	1) Cu	2) Li	3) K	4) Na		
122.	In a hydrogen atom, the other electron is	electron is at a distance of o	0 f 4.768 Å from the nucleus	s. The angular momentum of		
	1) $\frac{3h}{2\pi}$	2) $\frac{h}{2\pi}$	3) $\frac{h}{\pi}$	4) $\frac{2h}{\pi}$		
123.	The incorrect order of se	cond ionization energies in	the following is			
	1) $Rb > K$	2) Na > Mg	3) $Cr > Mn$	4) $S > P$		
124.	The correct order of mag	gnitude of bond angles amor	ng the compounds CH_4 , N	H_3 and H_2O is		
	1) $CH_4 < H_2O < NH_3$	2) $H_2O < NH_3 < CH_4$	3) $NH_3 < CH_4 < H_2O$	4) $NH_3 < H_2O < CH_4$		
125.	Molecular orbital theory	was proposed by				
	1) Lewis	2) Muliken	3) Slater	4) Pauling		
126.	0.14 g of an element on	combustion gives 0.28 g of	its oxide. What is that ele	ment?		
	1) Nitrogen	2) Carbon	3) Fluorine	4) Sulphur		
127.	Equal weights of methan pressure exerted by oxyg		an empty container at 25	^o C. The fraction of the total		
	1) $\frac{1}{2}$	2) $\frac{2}{3}$	3) $\frac{1}{4}$	4) $\frac{1}{3}$		
128.	Which one of the follow	ing 1.0×10^{-3} molal aqueo	us solutions has the highe	st boiling point ?		
	1) Aluminium (III) chlor		2) Lead (II) nitrate			
	3) Sodium chloride		4) Magnesium nitrate			
129.	What is the volume of 0.	1M H ₂ SO ₄ required in litres	to neutralize completely 1	litre of a solution containing		
	20 g of NaOH ?					
	1) 5.0	2) 0.5	3) 2.5	4) 10.0		
130.	If the solution of copper	r sulphate in which a copp	er rod is immersed, is dil	uted 100 times, what is the		
	change in electrode pote	ntial (Reduction) ?				
	1) Increases by 29.5 mV	2) Decreases by 29.5 mV	3) Increases by 59.0 m	V 4) Decreases by 59.0 mV		
131.	What is the e.m.f. of the	cell for the reaction Fe^{2+} -	$+$ Zn \rightarrow Zn ²⁺ + Fe? Give	n that		
	$E E_{Zn Zn^{2+}(1.0M) }^{0} = 0.76^{5}$	$V_{\text{and}} E^{0}_{ \text{Fe}^{2+}(1.0\text{M}) } = 0.41$	V			
	1) 1.17 V	2) 0.35 V	3) –1.17 V	4) -0.35 V		
132.	0		-	lge of the unit cell (FCC) is		
	20 A. How many number	er of atoms are present in 20	00 grams of the solid ?			

Page No.1

Eamcet-2010 Medical (Chemistry)

133.	For the reaction	$A + 3B \rightarrow 2C + D$,	which one of the	following is not correct?
------	------------------	-------------------------------	------------------	---------------------------

- 1) Rate of disappearance of A = Rate of formation of D
- 2) Rate of formation of $C = \frac{2}{3} \times Rate$ of disappearance of B
- 3) Rate of formation of $D = \frac{1}{3} \times Rate$ of disappearance of B
- 4) Rate of disappearance of A = 2 x Rate of formation of C

134. What is the effect of a ten-fold increase in pressure on K_p in the reaction $N_{(2)(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ at equilibirum ?

- 1) A ten-fold increase 2) A ten-fold decrease 3) No change 4) Equal to K_c
- 135. <u>Assertion (A)</u>: According to Lowry-Bronsted theory, a subtance can function as an acid as well as a base <u>Reason (R)</u>: Acid reacts with a base to produce a salt.

The correct answer is

- 1) Both A and R are true and R explains A
- 2) Both A and R are true and R does not explains A
- 3) A is true, R is false 4) A is false, R is true
- 136. Heat of formation of CO and CO_2 are -94.0 kcal/mole respectively. What is the heat of combustion of CO in kcals ?

	1) +26.4	2)120.6	3)-67.6	4) 135.2		
137.	What is the emulsifier in a	nilk ?				
	1) Albumin	2) Soap	3) Gelatin	4) Caesin		
138.	Which of the following st	atements is incorrect ?				
	1) H_2O_2 has weak acidic	property	2) H_2O_2 has weak basic property			
	3) H_2O_2 can act as oxidisi	ing agent	4) H_2O_2 can act as a reducing agent			
139.	Match the following					
	<u>List - I</u>		<u>List - II</u>			
	A) Dolomite		I) CaCO ₃			
	B) Fluorapatite		II) 2BeO. SiO ₂			

- C) Phenacite
- D) Celestite

The correct answer is

	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>		<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>
1)	IV	V	III	II	2)	V	IV	II	III
3)	IV	V	Ι	II	4)	IV	V	II	III

140. Aluminium metal becomes passive in

1) conc. HNO_3 2) dil. H_2SO_4 3) very dil. HNO_3 4) conc. H_2SO_4

III) SrSO₄

IV) CaCO₃. MgCO₃

V) $3Ca_3(PO_4)_2.CaF_2$

141. A and B are the compounds of carbon. A on passing over red hot coke is converted to B. Then A and B are respectively

1) $Co_{2}CO_{2}$ 2) CO_{2} , CO 3) CH_{4} , $C_{2}H_{6}$ 4) CCI_{4} , $CHCI_{3}$

Eamcet-2010 Medical (Chemistry)
-----------------------	------------

	cet-2010 Medical (Chemis					
142.		oxygen atoms bonded to ea				
	1) 3	2) 4	3) 5	4) 6		
143.		Sulphur in S_8 , SO_2 and H_2S				
	1) 0, +6, -2	2)0, +4, -2	3) 0, +1, +2	4) 0, +1, -2		
144.	-	ies in halogen molecules is				
		2) $F_2 > Cl_2 Br_2 > I_2$	3) $\text{Cl}_2 > \text{Br}_2 > \text{F}_2 > \text{I}_2$	4) $Cl_2 > F_2 > Br_2 > I_2$		
145.	The shape of XeF_6 is					
	1) Pentagonal bipyramid	al	2) Square planar			
	3) Octahedral		4) Distrorted octahedral			
146.	One mole of CoCl ₃ . YNH	I_{3} complex compound on con-	mplete ionisation in water	produces thre moles of ions.		
	If one chloride satisties b	both primary and secondary	velencies of cobalt ion, the	e value of Y is		
	1) 3	2) 4	3) 5	4) 6		
147.	The process used in the	refining of aluminium and z	inc metals are repsectively	7		
	1) Hoop's process and fr	actional distillation	2) Hoop's process and a	cupellation		
	3) Poling and fractional	distillation	4)Cupellation and fracti	onal distillation		
148.	Ozone layer is present in	I				
	1) Troposphere	2) Stratosphere	3) Mesosphere	4) Thermaosphere		
149.	The IUPAC name of					
	1) 4-ethyl decane	2) 3-propyl nonane				
	3) 3-hexyl hexane	4) 4-hexyl hexane				
150.	The product obtained wh	nen propene undergoes addit	ion reaction with HBr in	thepresence of benzoyl per-		
	oxide is					
	1) 1-bromopropane	2) 2-bromopropane	3) 1, 2-dibromopropane	4) 2, 2-dibromopropane		
151.	Which one of the followi	ng compound is formed whe	en nitrobenzene is treated v	vith bromine in the presence		
	of ferric ion ?					
	1) m-bromonitrobenzene	2	2) o-bromonitrobenzene	2		
	3) p-bromonitrobenzene		4) mixture of o-bromon	itrobenzenes		
152.	Which one of the follow	ing not having two chiralcer	ntres ?			
	$H_3C - CH(Br) - CH(OH)$) – CH ₃	2) $H_{3}C - (CH(NH_{2}) - C)$	$H(Br) - CH_3$		
	3) $H_3C - CH(NH_2) - CH$	5	4) $H_{3}C - CH(NH_{2}) - CH$	-		
153.		with silver powder gives	5 2	2 5		
	1) CH ₄	2) $H_{3}C - CH_{3}$	3) CH = CH	4) $CH_{2} = CH_{2}$		
154.	-	ing compounds in steam dis				
	1) p-nitrophenol	2) o-bromophenol	3) o-cresol	4) o-nitrophenol		
155.		ing is one of the cross end p		-		
		eating with aqueous sodium				
	1) $s(CH_3)_2 C = CH - C$		2) $(Ch_3)C = CHCOCH$	I.		
	1) s(chi3) ₂ c = chi c	**	$2) (CII_3)C = CIICOCII_3$			

3) $Ch_3 - CH = CH - CHO$ 4) $(CH_3)_2 CH(OH)CH_2CO - CH_3$

Page No.3

Eamcet-2010 Medical (Chemistry)

156. What are A, B and C in the following reactions ?

1)
$$CH_3CO_2Na \xrightarrow{Soda \ lime/\Delta} A \cdot CH_3CO_2H \xrightarrow{LiAlH_4} B \cdot CH_3CO_2Na \xrightarrow{Kolbe's electrolysis} C$$

A B C
1) C_2H_6 C_2H_5OH CH_4
2) CH_4 C_2H_5OH C_2H_6
3) C_2H_6 CH_3COCH_3 C_3H_8
4) $(CH_3CO)_2O$ C_2H_6 C_2H_6

157. A, B and C in the following reactions ?

2) All naturally occuring α – amino acids optically acitive except glycine

3) At pH = 0 all amino acids are present as their anions

4) In strongly basic solutions, all amino acids are present as their cations

160. Aspirin is acetyl salicylic acid; the pair of functional groups present in the compound is

1) Hydroxyl, ester

3) Carboxylic acid, keto

2) Carboxylic acid, hydroxyl

4) Carboxylic acid, ester

121) 4	122) 1	123) 1	124) 1	125) 2	126) 4	127) 4	128) 1	129) 3	130) 4
131) 2	132) 3	133) 4	134) 3	135) 2	136) 3	137) 4	138) 2	139) 4	140) 1
141) 2	142) 2	143) 2	144) 3	145) 4	146) 3	147) 1	148) 2	149) 1	150) 1
151) 1	152) 4	153) 3	154) 4	155) 1	156) 2	157) 2	158) 3	159) 2	160) 4