EAMCET-2010 ENGINEERING-MATHS

1. Let $\vec{a}=\vec{i}-2 \vec{j}+3 \vec{k}, \vec{b}=2 \vec{i}+3 \vec{j}-\vec{k}$ and $\vec{c}=\lambda \vec{i}+\vec{j}+(2 \lambda-1) \vec{k}$. If \vec{c} parallel to the plane containing \vec{a}, \vec{b} then $\lambda=$
1) 0
2) 1
3) -1
4) 2
2. If three unit vectors $\vec{a}, \vec{b}, \vec{c}$ satisfy $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ then the angle between \vec{a} and \vec{b} is:
1) $\frac{2 \pi}{3}$
2) $\frac{5 \pi}{6}$
3) $\frac{\pi}{3}$
4) $\frac{\pi}{6}$
3. $(\vec{a}+2 \vec{b}-\vec{c}) \cdot(\vec{a}-\vec{b}) \times(\vec{a}-\vec{b}-\vec{c})=$
1) $-\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
2) $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
3) $3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
4) $\overrightarrow{0}$
4. $\vec{u}=\vec{a}-\vec{b}, \vec{v}=\vec{a}+\vec{b},|\vec{a}|=|\vec{b}|=2 \Rightarrow|\vec{u} \times \vec{v}|=$
1) $2 \sqrt{16-(\vec{a} \cdot \vec{b})^{2}}$
2) $\sqrt{16-(\vec{a} \cdot \vec{b})^{2}}$
3) $2 \sqrt{4-(\vec{a} \cdot \vec{b})^{2}}$
4) $\sqrt{4-(\vec{a} \cdot \vec{b})^{2}}$
5. If the angle θ between the vectors $\vec{a}=2 x^{2} \vec{i}+4 x \vec{j}+\vec{k}$ and $\vec{b}=7 \vec{i}-2 \vec{j}+x \vec{k}$ is such that $90^{\circ}<\theta<180^{\circ}$ then x lies in the interval:
1) $\left(0, \frac{1}{2}\right)$
2) $\left(\frac{1}{2}, 1\right)$
3) $\left(1, \frac{3}{2}\right)$
4) $\left(\frac{1}{2}, \frac{3}{2}\right)$
6. Let $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$ be the co-terminal edges of a rectangular parallelopiped of volume \mathbf{V} and let \mathbf{P} be the vertex opposite to \mathbf{O}. Then $\left[\begin{array}{lll}\overrightarrow{A P} & \overrightarrow{B P} & \overrightarrow{C P}\end{array}\right]=$
1) 2 V
2) 12 V
3) $3 \sqrt{3} \mathrm{~V}$
4) 0
7. An urn A contains $\mathbf{3}$ white and 5 black balls. Another urn B contains $\mathbf{6}$ white and $\mathbf{8}$ black balls. A ball is picked from A at random and then transferred to B. Then a ball is picked at random from B. The probability that it is a white ball is:
1) $\frac{14}{40}$
2) $\frac{15}{40}$
3) $\frac{16}{40}$
4) $\frac{17}{40}$
8. If $\mathbf{A}_{\mathbf{i}}(\mathbf{i}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots \ldots \mathbf{n})$ are \mathbf{n} independent events with $P\left(A_{i}\right)=\frac{1}{1+i}$ for each \mathbf{i}, then the probability that none of A_{i} occurs is
1) $\frac{n-1}{n+1}$
2) $\frac{n}{n+1}$
3) $\frac{n}{n+2}$
4) $\frac{1}{n+1}$
9. Suppose A and B are two events such that $P(A \cap B)=\frac{3}{25}$ and $P(B-A)=\frac{8}{25}$. Then $\mathbf{P}(B)=$
1) $\frac{11}{25}$
2) $\frac{3}{11}$
3) $\frac{1}{11}$
4) $\frac{9}{11}$
10. Suppose that a random variable X follows Poisson distribution. If $P(X=1)=P(X=2)$ then $P(X=5)=$
1) $\frac{2}{3} e^{-2}$
2) $\frac{3}{4} e^{-2}$
3) $\frac{4}{15} e^{-2}$
4) $\frac{7}{8} e^{-2}$

Eamcet-2010 Engineering (Maths)

11. If the mean and variance of a binomial variable X are 2 and 1 respectively, then $P(X \geq 1)=$
1) $\frac{2}{3}$
2) $\frac{15}{16}$
3) $\frac{7}{8}$
4) $\frac{4}{5}$
12. If a straight line L is perpendicular to the line $4 x-2 y=1$ and forms a triangle of area 4 square units with the coordinate axes, then an equation of the line L is
1) $2 x+4 y+7=0$
2) $2 x-4 y+8=0$
3) $2 x+4 y+8=0$
4) $4 x-2 y-8=0$
13. The image of the point $(4,-13)$ with respect to the line $5 x+y+6=0$ is
1) $(-1,-14)$
2) $(3,4)$
3) $(1,2)$
4) $(-4,13)$
14. The image of the line $x+y-2=0$ in the $Y-$ axis is
1) $x-y+2=0$
2) $y-x+2=0$
3) $x+y+2=0$
4) $x+y-2=0$
15. A straight line which makes equal intercepts on positive X and Y axes and which is at a distance 1 unit from the origin intersects the straight line $y=2 x+3+\sqrt{2}$ at $\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)$. Then $\mathbf{2} \mathbf{x}_{\mathbf{0}}+\mathbf{y}_{\mathbf{0}}=$
1) $3+\sqrt{2}$
2) $\sqrt{2}-1$
3) 1
4) 0
16. The distance between the two lines represented by $8 x^{2}-24 x y+18 y^{2}-6 x+9 y-5=0$ is
1) 0
2) $\frac{3}{4 \sqrt{13}}$
3) $\frac{6}{\sqrt{13}}$
4) $\frac{7}{2 \sqrt{13}}$
17. A pair of perpendicular lines passes through the origin and also through the points of intersection of the curve $x^{2}+y^{2}=4$ with $x+y=a$, where $a>0$. Then $a=$
1) 2
2) 3
3) 4
4) 5
18. If $3 x^{2}-11 x y+10 y^{2}-7 x+13 y+k=0$ denotes a pair of straight lines, then the point of intersection of the lines is
1) $(1,3)$
2) $(3,1)$
3) $(-3,1)$
4) $(1,-3)$
19. The equation of the radical axis of the pair of circles $7 x^{2}+7 y^{2}-7 x+14 y+18=0$ and $4 x^{2}+4 y^{2}-7 x+$ $8 y+20=0$ is
1) $x-2 y-5=0$
2) $2 x-y+5=0$
3) $21 x-68=0$
4) $23 x-68=0$
20. If the lengths of tangents drawn to the circles: $x^{2}+y^{2}-8 x+40=0 ; 5 x^{2}+5 y^{2}-25 x+80=0$; $x^{2}+y^{2}-8 x+16 y+160=0$ from the point P are equal, then $P=$
1) $\left(8, \frac{15}{2}\right)$
2) $\left(-8, \frac{15}{2}\right)$
3) $\left(8, \frac{-15}{2}\right)$
4) $\left(-8, \frac{-15}{2}\right)$
21. The equation of the circle concentric with the circle $x^{2}+y^{2}-6 x+12 y+15=0$ and of double its area is
1) $x^{2}+y^{2}-6 x+12 y-15=0$
2) $x^{2}+y^{2}-6 x+12 y-30=0$
3) $x^{2}+y^{2}-6 x+12 y-25=0$
4) $x^{2}+y^{2}-6 x+12 y-20=0$
22. If the circle $x^{2}+y^{2}+2 x+3 y+1=0$ cuts another circle $x^{2}+y^{2}+4 x+3 y+2=0$ in A and B, then the equation of the circle with $A B$ as a diameter is
1) $x^{2}+y^{2}+x+3 y+3=0$
2) $2 x^{2}+2 y^{2}+2 x+6 y+1=0$
3) $x^{2}+y^{2}+x+6 y+1=0$
4) $2 x^{2}+2 y^{2}+x+3 y+1=0$
23. The length of the common chord of the cirlces of radii 15 and 20 whose centres are 25 units of distance apart, is
1) 12
2) 16
3) 24
4) 25
24. Let M be the foot of the perpendicular from a point P on the parabola $y^{2}=8(x-3)$ onto its directrix and let \mathbf{S} be the focus of the parabola. If $\triangle S P M$ is an equilateral triangle, then $\mathbf{P}=$
1) $(4 \sqrt{3}, 8)$
2) $(8,4 \sqrt{3})$
3) $(9,4 \sqrt{3})$
4) $(4 \sqrt{3}, 9)$
25. The equation of the hyperbola which passes through the point $(2,3)$ and has the asymptotes $4 x+3 y-7=0$ and $x-2 y-1=0$ is
1) $4 x^{2}+5 x y-6 y^{2}-11 x+11 y+50=0$
2) $4 x^{2}+5 x y-6 y^{2}-11 x+11 y-43=0$
3) $4 x^{2}-5 x y-6 y^{2}-11 x+11 y+57=0$
4) $x^{2}-5 x y-y^{2}-11 x+11 y-43=0$
26. The product of the perpendicular distances from any point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to its asymptotes is
1) $\frac{a^{2} b^{2}}{a^{2}-b^{2}}$
2) $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
3) $\frac{a^{2}+b^{2}}{a^{2} b^{2}}$
4) $\frac{a^{2}-b^{2}}{a^{2} b^{2}}$

Eamcet-2010 Engineering (Maths)
27. If the lines $2 x+3 y+12=0, x-y+k=0$ are conjugate with respect to the parabola $y^{2}=8 x$, then $k=$

1) 10
2) $\frac{7}{2}$
3) -12
4) -2
28. The length of the latus rectum of the conic $\frac{5}{r}=2+3 \cos \theta+4 \sin \theta$ is
1) 2
2) 3
3) 4
4) 5
29. The point dividing the join of $(3,-2,1)$ and $(-2,3,11)$ in the ratio $2: 3$ is
1) $(1,1,4)$
2) $(1,0,5)$
3) $(2,3,5)$
4) $(0,6,-1)$
30. If α, β, γ are the roots of the equation $\mathbf{x}^{3}-6 \mathbf{x}^{2}+11 \mathbf{x}-\mathbf{6}=\mathbf{0}$ and if $a=\alpha^{2}+\beta^{2}+\gamma^{2}, b=\alpha \beta+\beta \gamma+\gamma \alpha$ and $c=(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$, then the correct inequality among the following is
1) $a<b<c$
2) $\mathrm{b}<\mathrm{a}<\mathrm{c}$
3) $b<c<a$
4) $c<a<b$
31. A plane meets the coordinate axes at A, B, C so that the centroid of the triangle $A B C$ is $(1,2,4)$. Then the equation of the plane is
1) $x+2 y+4 z=12$
2) $4 x+2 y+z=12$
3) $x+2 y+4 z=3$
4) $4 x+2 y+z=3$
32. If $(2,3,-3)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the other end of the diameter is
1) $(4,9,-1)$
2) $(4,9,5)$
3) $(-8,-15,1)$
4) $(8,15,5)$
33. $\underset{x \rightarrow 0}{ } \frac{\tan x-\sin x}{x^{2}}=$
1) 0
2) 1
3) $\frac{1}{2}$
4) $-\frac{1}{2}$
34. If $f: R \rightarrow R$ defined by $f(x)=\left\{\begin{array}{cc}\frac{1+3 x^{2}-\cos 2 x}{x^{2}}, & \text { for } \mathrm{x} \neq 0 \\ \mathrm{k} & \text {, for } \mathrm{x}=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then $\mathrm{k}=$
1) 1
2) 5
3) 6
4) 0
35. $\mathbf{f}(\mathbf{x})=(\cos \mathbf{x})(\cos 2 \mathbf{x}) \ldots \ldots \ldots \ldots . .(\cos \mathbf{n x}) \Rightarrow f^{\prime}(x)+\sum_{r=1}^{n}(r \tan r x) f(x)=$
1) $f(x)$
2) 0
3) $-f(x)$
4) $2 f(x)$
36. $y=\cos ^{-1}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)+\sin ^{-1}\left(\frac{2 a x}{a^{2}+x^{2}}\right) \Rightarrow \frac{d y}{d x}=$
1) $\frac{a}{x^{2}+a^{2}}$
2) $\frac{2 a}{x^{2}+a^{2}}$
3) $\frac{4 a}{x^{2}+a^{2}}$
4) $\frac{a^{2}}{x^{2}+a^{2}}$
37. $f(x)=\sin x+\cos x \Rightarrow f\left(\frac{\pi}{4}\right) f^{(i v)}\left(\frac{\pi}{4}\right)=$
1) 1
2) 2
3) 3
4) 4
38. $y=\sin \left(m \sin ^{-1} x\right) \Rightarrow\left(1-x^{2}\right) y_{2}-x y_{1}=$
(Here $\mathbf{y}_{\mathbf{n}}$ denotes $\frac{d^{n} y}{d x^{n}}$)
1) $m^{2} y$
2) $-m^{2} y$
3) $2 m^{2} y$
4) $-2 m^{2} y$
39. The height of the cone of maximum volume inscribed in a sphere of radius R is
1) $\frac{R}{3}$
2) $\frac{2 R}{3}$
3) $\frac{4 R}{3}$
4) $\frac{4 R}{\sqrt{3}}$
40. The longest distance of the point $(a, 0)$ from the curve $2 x^{2}+y^{2}=2 x$ is
1) $1+a$
2) $|1-a|$
3) $\sqrt{1-2 a+2 a^{2}}$
4) $\sqrt{1-2 a+3 a^{2}}$

Eamcet-2010 Engineering (Maths)

41. A variable triangle ABC is inscribed in a circle of diameter x units. At a particular instant, the rate of change in side a is $\frac{x}{2}$ times the rate of change in its opposite angle A. Then $A=$
1) $\frac{\pi}{2}$
2) $\frac{\pi}{3}$
3) $\frac{\pi}{4}$
4) $\frac{\pi}{6}$
42. $u=\sin ^{-1}\left(\frac{x^{4}+y^{4}}{x+y}\right) \Rightarrow x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$
1) $3 u$
2) $4 u$
3) $3 \sin u$
4) $3 \tan u$
43. $\int \frac{7 x^{8}+8 x^{7}}{\left(1+x+x^{8}\right)^{2}} d x=f(x)+c \Rightarrow f(x)=$
1) $\frac{x^{8}}{1+x+x^{8}}$
2) $28 \log \left(1+x+x^{8}\right)$
3) $\frac{1}{1+x+x^{8}}$
4) $\frac{-1}{1+x+x^{8}}$
44. If $f_{n}(x)=\log \log \log \ldots \ldots \log \mathbf{x}(\log$ is repeated n-times $)$, then $\int\left(x f_{1}(x) f_{2}(x) \ldots \ldots \ldots f_{n}(x)\right)^{-1} d x=$
1) $f_{n+1}(x)+c$
2) $\frac{f_{n+1}(x)}{n+1}+c$
3) $n f_{n}(x)+c$
4) $\frac{f_{n}(x)}{n}+c$
45. $\int(1-\cos x) \operatorname{cosec}{ }^{2} x d x=f(x)+c \Rightarrow f(x)=$
1) $\tan \frac{x}{2}$
2) $\cot \frac{x}{2}$
3) $2 \tan \frac{x}{2}$
4) $\frac{1}{2} \tan \frac{x}{2}$
46. If $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$, then $\mathbf{I}_{2}+\mathbf{I}_{4}, \mathbf{I}_{3}+\mathbf{I}_{5}, \mathbf{I}_{4}+\mathbf{I}_{6}, \ldots \ldots \ldots \ldots$. are in :
1) airthmetic progression
2) geometric progression
3) harmonic proression
4) arithmetic-gemetricprogression
47. The area (in wquare units) of the region enclosed by the two circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$ is :
1) $\frac{2 \pi}{3}+\frac{\sqrt{3}}{2}$
2) $\frac{\pi}{3}+\frac{\sqrt{3}}{2}$
3) $\frac{\pi}{3}-\frac{\sqrt{3}}{2}$
4) $\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}$
48. The values of a function $f(x)$ at differnt values of x are as follows :

x	$:$	0	1	2	3	4	5
$f(x):$	2	3	6	11	18	27	

Then the approximate area (in square units) bounded by the cure $\mathbf{y}=f(x)$ and \mathbf{X} - axis between $\mathbf{x}=0$ and 5, using the Trapezoidal rule, is :

1) 50
2) 75
3) 52.5
4) 62.5
49. The solution of $\tan y \frac{d y}{d x}=\sin (x+y)+\sin (x-y)$ is :
1) $\sec y=2 \cos x+c$
2) $\sec y=-2 \cos x+c$
3) $\tan y=-2 \cos x+c$
4) $\sec ^{2} y=-2 \cos x+c$
50. A family of curves has the differential equation $x y \frac{d y}{d x}=2 y^{2}-x^{2}$. Then the family of curves is :
1) $y^{2}=c x^{2}+x^{3}$
2) $y^{2}=c x^{4}+x^{3}$
3) $y^{2}=x+c x^{4}$
4) $y^{2}=x^{2}+c x^{4}$
51. If $f(0)=0, f(1)=1, f(2)=2$, and $f(x)=f(x-2)+f(x-3)$ for $\mathbf{x}=\mathbf{3}, 4,5$, \qquad then $f(9)=$
1) 12
2) 13
3) 14
4) 10

Eamcet-2010 Engineering (Maths)
52. Let R denote the set of all real numbers and R^{+}denote the set of all positive real numbers. For the subsets A and B of \mathbf{R} define $f: A \rightarrow B$ by $f(x)=x^{2}$ for $x \in \mathbf{A}$. Observe the two lists given below:

List I

(i) f is one-one and onto if
(ii) f is one-one but not onto if
(iii) f is onto but not one-one if
(iv) f is neither one-one nor onto if

The correct matching of List I to List II is

1) $\quad \mathrm{a} \quad \mathrm{b} \quad \mathrm{c} \quad \mathrm{d}$
2)
3) d
\qquad when divided by 25 leave the remainder :
53. The numbers $a_{n}=6^{n}-5 n$ for $\mathbf{n}=1,2,3$,
1) 9
2) 7
3) 3
4) 1
54. Let $n=1!+4!+7!+\ldots+400!$. Then ten's digit of n is :
1) 1
2) 6
3) 2
4) 7
55. Let $a_{n}=\frac{10^{n}}{n!}$ for $\mathbf{n}=1,2,3, \ldots \ldots \ldots \ldots \ldots .$. Then the greatest value of \mathbf{n} for which a_{n} is the greatest is :
1) $n 11$
2) 20
3) 10
4) 8
56. A polygon has 54 diagonals. Then the number of its sides is :
1) 7
2) 9
3) 10
4) 12
57. $\left(\mathbf{1}+\mathbf{2 x}+3 \mathbf{x}^{2}\right)^{\mathbf{1 0}}=a_{0}+a_{1} x+a_{2} x^{2}+$ \qquad $+a_{20} x^{20} \Rightarrow \frac{a^{2}}{a_{1}}$
1) 10.5
2) 21
3) 10
4) 5.5
58. For $|x|<\frac{1}{5}$, the coefficient of \mathbf{x}^{3} in the expansion of $\frac{1}{(1-5 x)(1-4 x)}$ is :
1) 369
2) 370
3) 371
4) 372
59. $\frac{3 x^{2}+x+1}{(x-1)^{4}}=\frac{a}{(x-1)}+\frac{b}{(x-1)^{2}}+\frac{c}{(x-1)^{3}}+\frac{d}{(x-1)^{4}} \Rightarrow\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=$
1) $\left[\begin{array}{ll}3 & 7 \\ 5 & 0\end{array}\right]$
2) $\left[\begin{array}{ll}0 & 3 \\ 7 & 5\end{array}\right]$
3) $\left[\begin{array}{ll}0 & 7 \\ 3 & 5\end{array}\right]$
4) $\left[\begin{array}{ll}3 & 5 \\ 7 & 0\end{array}\right]$
60. $\log _{4} 2-\log _{8} 2+\log _{16} 2-\ldots \ldots \ldots=$
1) e^{2}
2) $\log _{e} 2$
3) $1+\log _{e} 3$
4) $1-\log _{e} 2$
61. For $x \in R$, the least value of $\frac{x^{2}-6 x+5}{x^{2}+2 x+1}$ is :
1) -1
2) $-\frac{1}{2}$
3) $-\frac{1}{4}$
4) $-\frac{1}{3}$
62. $\left\{x \in R: \frac{14 x}{x+1}-\frac{9 x-30}{x-4}<0\right\}=$
1) $(-1,4)$
2) $(1,4) \cup(5,7)$
3) $(1,7)$
4) $(-1,1) \cup(4,6)$
63. The condition that the roots of $x^{3}-b x^{2}+c x-d=0$ are in geometric progression is :
1) $c^{3}=b^{3} d$
2) $c^{2}=b^{2} d$
3) $c=b d^{3}$
4) $c=b d^{2}$
64. Let $\alpha \neq 1$ be a real root of the equation $\mathbf{x}^{3}-\mathbf{a x}^{2}+\mathbf{a x}-1=0$, where $a \neq-1$ is a real number. Then a root of this equation, among the following, is :
1) α^{2}
2) $-\frac{1}{\alpha}$
3) $\frac{1}{\alpha}$
4) $-\frac{1}{\alpha^{2}}$

Eamcet-2010 Engineering (Maths)

65.

$f(x)=\left|\begin{array}{ccc}2 \cos x & 1 & 0 \\ x-\frac{\pi}{2} & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x\end{array}\right| \Rightarrow f^{\prime}(\pi)=$

1) 0
2) 2
3) $\frac{\pi}{2}$
4) $\pi-6$
66. $\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0, x \neq y \neq z \Rightarrow 1+x y z=$
1) 0
2) -1
3) 1
4) 2
67. If the system of equations :

$$
\begin{aligned}
& (k+1)^{3} x+(k+2)^{3} y=(k+3)^{3} \\
& (k+1) x+(k+2) y=k+3
\end{aligned}
$$

$\mathbf{x}+\mathbf{y}=1$ is consistent, then the value of k is :

1) 2
2) -2
3) -1
4) 1
68. If A is a nonzero square matrix of order n with $\operatorname{det}(I+A) \neq 0$ and $A^{3}=0$, where I, 0 are unit and null matrices of order $n \times n$ respectively then $(I+A)^{-1}=$
1) $I-A+A^{2}$
2) $I+A+A^{2}$
3) $I+A^{-1}$
4) $I+A$
69. $z=1+i \sqrt{3} \Rightarrow|\operatorname{Arg} z|+|\operatorname{Arg} \bar{z}|=$
1) 0
2) $\frac{\pi}{3}$
3) $\frac{\pi}{2}$
4) $\frac{2 \pi}{3}$
70. If ω is a complex cube root of unity, then $(x+1)(x+\omega)(x-\omega-1)=$
1) $x^{3}-1$
2) $x^{3}+1$
3) $x^{3}+2$
4) $x^{3}-2$
71. $(\sqrt{3}+i)^{7}+(\sqrt{3}-i)^{7}=$
1) $128 \sqrt{3}$
2) $256 \sqrt{3}$
3) $-128 \sqrt{3}$
4) $-256 \sqrt{3}$
72. The period of $\left(\tan \theta-\frac{1}{3} \tan ^{3} \theta\right)\left(\frac{1}{3}-\tan ^{2} \theta\right)^{-1}$, where $\tan ^{2} \theta \neq \frac{1}{3}$ is :
1) $\frac{\pi}{3}$
2) $\frac{2 \pi}{3}$
3) π
4) 2π
73. $a \sin ^{2} \theta+b \cos ^{2} \theta=c \Rightarrow \tan ^{2} \theta=$
1) $\frac{b-c}{a-c}$
2) $\frac{c-b}{a-c}$
3) $\frac{a-c}{b-c}$
4) $\frac{a-c}{c-b}$
74. If $\cos (x-y), \cos x, \cos (x+y)$ are three distinct numbers which are in harmonic progression and $\cos x \neq \cos y$, then $1+\cos y=$
1) $\cos ^{2} x$
2) $-\cos ^{2} x$
3) $\cos ^{2} x-1$
4) $\cos ^{2} x-2$
75. The set of solutions of the equation $(\sqrt{3}-1) \sin \theta+(\sqrt{3}+1) \cos \theta=2$ is :
1) $\left\{2 n \pi \pm \frac{\pi}{4}+\frac{\pi}{12}: n \in \mathbb{Z}\right\}$
2) $\left\{2 n \pi \pm \frac{\pi}{4}-\frac{\pi}{12}: n \in \mathbb{Z}\right\}$
3) $\left\{n \pi+(-1)^{n} \frac{\pi}{4}+\frac{\pi}{12}: n \in \mathbb{Z}\right\}$
4) $\left\{n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{12}: n \in \mathbb{Z}\right\}$

Eamcet-2010 Engineering (Maths)

76. $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$

$$
\Rightarrow 1-x y-y z-z x=
$$

1) 1
2) 0
3) -1
4) 2
77. $\tanh ^{-1} x=a \log \left(\frac{1+x}{1-x}\right),|x|<1 \Rightarrow a=$
1) 1
2) 2
3) $\frac{1}{2}$
4) $\frac{1}{4}$
78. If $\Delta=a^{2}-(b-c)^{2}$, is the area of the triangle $\mathbf{A B C}$, then $\tan \mathbf{A}=$
1) $\frac{1}{16}$
2) $\frac{8}{15}$
3) $\frac{3}{4}$
4) $\frac{4}{3}$
79. In a traingle $\mathbf{A B C}, \mathbf{C}=90^{\circ}$. Then $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}=$
1) $\sin (A+B)$
2) $\sin (A-B)$
3) $\cos (A+B)$
4) $\cos (A-B)$
80. The sum of angles of elevation of the top of a tower from two points distant a and b from the base and in the same straight line with it is 90°. Then the height of the tower is :
1) $a^{2} b$
2) $a b^{2}$
3) $\sqrt{a b}$
4) $a b$

	1	2)	1		3		1		1		1		4		4		1	10)	3
11)	2	12)	3	13)	1	14)	1	15)	2	16)	4	17)	1	18)	2	19)	3	20)	3
21)	1	22)	2	23)	3	24)	3	25)	3	26)	2	27)	3	28)	4	29)	2	30)	2
31)	2	32)	2	33)	1	34)	2	35)	2	36)	3	37)	2	38)	2	39)	3	40)	3
41)	2	42)	4	43)	1	44)	1	45)	1	46)	3	47)	4	48)	3	49)	2	50)	4
51)	4	52)	3	53)	4	54)	2	55)	3	56)	4	57)	1	58)	1	59)	2	60)	4
61)	4	62)	4	63)	1	64)	3	65)	2	66)	1	67)	2	68)	1	69)	4	70)	2
71)	3	72)	1	73)	2	74)	1	75)	1	76)	2	77)	3	78)	2	79)	2	80)	3

EAMCET-2010 ENGINEERING-PHYSICS

81. A launching vehiclecarrying an artificial satellite of mass ' m ' is set for launch on the surface of the earth of mass ' M ' and radius ' R '. If the satellite is intended to move in a circular orbit of radius 7 R , the minimum energy required to be spent by the launching vehicle on the satellite is (Gravitational constant $=\mathrm{G}$)
1) $\frac{G M m}{R}$
2) $\frac{13 G M m}{14 R}$
3) $\frac{G M m}{7 R}$
4) $\frac{G M m}{14 R}$
82. The displacements of two particles of same mass executing SHM are represented by the equations $\mathrm{x}_{1}=4 \sin \left(10 t+\frac{\pi}{6}\right)$ and $\mathrm{x}_{2}=5 \cos (\omega t)$. The value of ' ω, for which the energy of both the particles remain same is
1) 16 units
2) 6 unints
3) 4 units
4) 8 units
83. Match the following

List - I
A) Hooke's law
B) Shearing strain
C) Bulk strain
D) Elastic Fatigue

List - II

I) Tangential strain
II) Temporary loss of elastic property
III) Elastic limit
IV) 3 times the linear strain

	$\underline{\underline{\mathbf{A}}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$		$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$
1)	II	I	IV	III	$2)$	III	IV	I	II
$3)$	III	I	IV	II	$4)$	I	II	III	IV

84. The excess pressure inside a spherical soap bubble of radius 1 cm is balanced by a column of oil (Sp. gr.= 0.8), 2 mm high, the surface tension of the bubble is
1) $3.92 \mathrm{~N} / \mathrm{m}$
2) $0.0392 \mathrm{~N} / \mathrm{m}$
3) $0.392 \mathrm{~N} / \mathrm{m}$
4) $0.00392 \mathrm{~N} / \mathrm{m}$
85. Water from a tap emerges vertically downwards with initial velocity $4 \mathrm{~ms}^{-1}$. The cross - sectional area of the tap is A. The flow is steady and pressure is constant throughout the stream of water. The distance h vertically below the tap, where the cross - sectional area of the stream becomes $\left(\frac{2}{3}\right) \mathrm{A}$, is $\left(\mathrm{g}=10 \mathrm{~ms}^{2}\right)$
1) 0.5 m
2) 1 m
3) 1.5 m
4) 2.2 m
86. A bimetallic strip is formed out of two identical strips, one of copper and the other of brass . The coefficients of linear expansion of the two mwtals are α_{C} and α_{B}. On heating, the temperature of the strip increases by ΔT and the strip bonds to form an arc of radius R . Then R is proportional to
1) ΔT
2) $\frac{1}{\Delta T}$
3) $\sqrt{\Delta T}$
4) $\frac{1}{\sqrt{\Delta T}}$
87. Three rods of equal lengths are joined to form an equilateral triangle $\mathrm{ABC} . \mathrm{D}$ is the mid - point of AB . The coefficient of linear expansion is α_{1} for material of $\operatorname{rod} \mathrm{AB}$ and α_{2} for material of rods AC and BC . If the distance DC remains constant for small changes in temperature, then
1) $\alpha_{1}=2 \alpha_{2}$
2) $\alpha_{1}=4 \alpha_{2}$
3) $\alpha_{1}=8 \alpha_{2}$
4) $\alpha_{1}=\alpha_{2}$

Eamcet-2010 Engineering (Physics)

88. An ideal gas expands isothermally from valume V_{1} to volume V_{2}. it is then compressed to the original volume V_{1} adiabaticaly. If $\mathrm{P}_{1}, \mathrm{P}_{2}$ and W represent the initial pressure, final pressure and the net work done by the gas respectively during the entire process, then
1) $\mathrm{P}_{1}>\mathrm{P}_{2}, W=0$
2) $\mathrm{P}_{1}>\mathrm{P}_{2}, W>0$
3) $\mathrm{P}_{2}>\mathrm{P}_{1}, W>0$
4) $\mathrm{P}_{2}>\mathrm{P}_{1}, W<0$
89. 3 moles of an ideal monoatomic gas performs ABCDA cyclic process as shown infigure below. The gas temperatures are $\mathrm{T}_{\mathrm{A}}=400 \mathrm{~K}, \mathrm{~T}_{\mathrm{B}}=800 \mathrm{~K}, \mathrm{~T}_{\mathrm{C}}=2400 \mathrm{~K}$ and $\mathrm{T}_{\mathrm{D}}=1200 \mathrm{~K}$. The work done by the gas is (approximately) $(\mathrm{R}=8.314 \mathrm{~J} /$ mole K$)$
1) 10 J
2) 20 J
3) 40 J
4) 100 kJ

90. Three rods AB, BC and BD made of the same material and having the same cross- section have been joined as shown in the figure. The ends A, C and D are held at temperatures of $20^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively. If each rod is of same length, then the temperature at the junction B of the three rods is
1) $90^{\circ} \mathrm{C}$
2) $60^{\circ} \mathrm{C}$
3) $40^{\circ} \mathrm{C}$
4) $30^{\circ} \mathrm{C}$

91. An organ pipe P_{1}, closed at one end and containing a gas of density ρ_{1} is vibrating inits first harmonic. Another organ pipe P_{2}, open at both ends ans containing a gas of density ρ_{2} is vibrating in its third harmonic. Both the pipes are in resonance with a given tuning fork. If the compressibility of gases is equal in both pipes, the ratio of the lengths of P_{1} and P_{2} is (assume the given gases to be monoatomic)
1) $1 / 3$
2) 3
3) $\frac{1}{6} \sqrt{\frac{\rho_{1}}{\rho_{2}}}$
4) $\frac{1}{6} \sqrt{\frac{\rho_{2}}{\rho_{1}}}$
92. A sonometer wire has a length of 114 cm , between two fixed ends. Where should two bridges be placed so as to divide the wire into three segments (in cm) whose fundamental frequencies are in the ratio $1: 3: 4$?
1) $\ell_{1}, \ell_{2}, \ell_{3}=18,24,72$
2) $\ell_{1}, \ell_{2}, \ell_{3}=24,18,72$
3) $\ell_{1}, \ell_{2}, \ell_{3}=72,18,24$
4) $\ell_{1}, \ell_{2}, \ell_{3}=72,24,18$
93. In an optical fibre, core and cladding were made with materials of refractive indices 1.5 and 1.414 respectively. To observe total internal reflection, what will be the range of incident angle with the axis of optical fibre ?
1) $0^{0}-60^{0}$
2) $0^{0}-48^{0}$
3) $0^{0}-30^{0}$
4) $0^{0}-82^{0}$
94. A ray of light passes through an equilateral prism such that the angle of incidence is equal to the angle of emergence and each one is equal to $3 / 4$ th the angle of prism. The angle of deviation is
1) 45^{0}
2) 39°
3) 20°
4) 30°
95. The distance between field lens and eye lens in Ramsden eyepiece is 4 cm . Then the distance of the cross wires from the eye lens is
1) 1.5 cm
2) 1.0 cm
3) 5.0 cm
4) 5.5 cm

Eamcet-2010 Engineering (Physics)

96. Two coherent sources whose intensity ratio is $64: 1$ produce interference fringes. The ratio of intensities of maxima and minima is
9:7
2) $8: 1$
3) $81: 49$
4) $81: 7$
97. The frequency of vibration in a vibration magnetometer of the combination of two bar magnets of magnetic moments M_{1} and M_{2} is 6 Hz when like poles are tied and it is 2 Hz when the unlike poles are tied together, then the ratio $M_{1}: M_{2}$ is
1) $4: 5$
2) $5: 4$
3) $1: 3$
4) $3: 1$
98. A short magnetic needle is pivoted in a uniform magnetic field of induction 1T. Now, simultaneously another magnetic field of induction $\sqrt{3} T$ is applied at right angles to the first field; the needle deflects through an angle ' θ ' whose value is
1) 30°
2) 45^{0}
3) 90°
4) 60°
99. The potential difference between two parallel plates is 10^{4} volts. If the plates are separated by 0.5 cm the force on an electron between the plates is
1) $32 \times 10^{-13} \mathrm{~N}$
2) $0.32 \times 10^{13} \mathrm{~N}$
3) $0.032 \times 10^{-13} \mathrm{~N}$
4) $3.2 \times 10^{-13} \mathrm{~N}$
100. Two capacitors of capacities $1 \mu F$ and $C \mu F$ are connected in series and the combination is charged to a potential difference of 120 V . If the charge on the combination is $80 \mu \mathrm{C}$, the energy stored in the capacitor of capacity C in micro Joules is
1) 1800
2) 1600
3) 14400
4) 7200
101. 6Ω and 12Ω resistors are connected in parallel. This combination is connected in series with a 10 V battery and 6Ω resistor. What is the potential difference between the terminals of the 12Ω resistor ?
1) 4 V
2) 16 V
3) 2 V
4) 8 V
102. Charge passing through a conductor of cross - section area $A=0.3 \mathrm{~m}^{2}$ is given by $\mathrm{q}=3 \mathrm{t}^{2}+5 \mathrm{t}+2$ in coulombs, where ' t ' is in seconds. What is the value of drift velocity at $\mathrm{t}=2 \mathrm{sec}$. Given $\mathrm{n}=2 \times 10^{25} / \mathrm{m}^{3}$
1) $0.77 \times 10^{-5} \mathrm{~m} / \mathrm{sec}$
2) $1.77 \times 10^{-5} \mathrm{~m} / \mathrm{sec}$
3) $2.08 \times 10^{-5} \mathrm{~m} / \mathrm{sec}$
4) $0.57 \times 10^{-5} \mathrm{~m} / \mathrm{sec}$
103. The Thermo e.m.f of a thermo-couple is given by, $\varepsilon=a T+b T^{2}$, where $a / b=-200^{\circ} C$. If the cold function is kept at $30^{\circ} \mathrm{C}$, then the inversion temperature is (ε in volts, T is in centigrade)
1) 103 K
2) 143 K
3) 333 K
4) 443 K
104. The intensity of the magnetic induction field at the center of a single turn circular coil of radius 5 cm carrying current of 0.9 A
1) $36 \pi \times 10^{-7} \mathrm{~T}$
2) $9 \pi \times 10^{-7} \mathrm{~T}$
3) $36 \pi \times 10^{-6} \mathrm{~T}$
4) $9 \pi \times 10^{-6} \mathrm{~T}$
105. A capacitor of capacity $0.1 \mu \mathrm{~F}$ connected in series to a resistor of $10 \mathrm{M} \Omega$ charged to a certain potential and then made to discharge through t resistor. The time in which the potential will take to fall to half its origin value is (Given $\log _{10} 2=0.3010$)
1) 2 sec
2) 0.693 sec
3) 0.5 sec
4) 1.0 sec
106. The time constant of inductance coil is $3 \mathrm{~m} \sec$. When a 90Ω resistance is joined in series, then the time constant becomes 0.5 m sec . The inductance and the resistance of the coil are
1) $54 \mathrm{mH}, 18 \Omega$
2) $14 \mathrm{mH}, 42 \Omega$
3) $42 \mathrm{mH}, 14 \Omega$
4) $14 \mathrm{mH}, 60 \Omega$

Eamcet-2010 Engineering (Physics)

107. In Thomson's experiment to determine $\frac{\mathrm{e}}{\mathrm{m}}$ of an electron, it is found that an electron beam having a kinetic energy of 4505 eV remains undeflected, when subjected to crossed electric and magnetic fields. If $\mathrm{E}=10^{3}$ Vm^{-1}, the value of ' B ' is (mass of the electron is $9.1 \times 10^{-31} \mathrm{~kg}$)
1) $2.5 \times 10^{-3} \mathrm{~Wb} \mathrm{~m}^{-2}$
2) $5.0 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$
3) $2.5 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$
4) $1.0 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$
108. Photoelectric emission is observed from a metallic surface for frequencies v_{1} and v_{2} of the incident light $\left(\mathrm{v}_{1}>\mathrm{v}_{2}\right)$. If the maximum values of kinetic energy of the photoelectrons emitted in the two cases are in the ratio $1: n$, then the threshold frequency of the metallic surface is
1) $\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) /(\mathrm{n}-1)$
2) $\left(n v_{1}-v_{2}\right) /(n-1)$
3) $\left(n v_{2}-v_{1}\right) /(n-1)$
4) $\left(v_{1}-v_{2}\right) / n$
109. Three particles α-particle, proton and deuteron are accelerated by the sar potential difference. The velocities of them are in the ratio
1) $1: \sqrt{2}: 1$
2) $\sqrt{2}: 1: 1$
3) $1: 2: 4$
4) $4: 2: 1$
110. A transistor having a β equal to 80 has a change in base current of $250 \mu \mathrm{~A}$ then the change in collector current is
1) $20,000 \mathrm{~mA}$
2) 200 mA
3) 2000 mA
4) 20 mA
111. If the force is given by $\mathrm{F}=\mathrm{at}+\mathrm{bt}^{2}$ with t as time. The dimensions of a and b are
1) $\mathrm{MLT}^{-4}, \mathrm{MLT}^{-2}$
2) $\mathrm{MLT}^{-3}, \mathrm{MLT}^{-4}$
3) $\mathrm{ML}^{2} \mathrm{~T}^{-3}, \mathrm{ML}^{2} \mathrm{~T}^{-2}$
4) $\mathrm{ML}^{2} \mathrm{~T}^{-3}, \mathrm{ML}^{3} \mathrm{~T}^{-4}$
112. $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ are two vector of equal magnitude and θ is the angle between them. The angle between $\overrightarrow{\mathrm{A}}$ or $\overrightarrow{\mathrm{B}}$ with their resultant is
1) $\theta / 4$
2) $\theta / 2$
3) 2θ
4) 0
113. An athlete completes one round of a circular track of radius R in 40 sec . What will be his displacement at the end of 2 min 20 seconds ?
1) $7 R$
2) $2 R$
3) $2 \pi R$
4) $7 \pi R$
114. A ball is falling freely from a height. When it reaches 10 m height from the ground its velocity is V_{0}. It collides with the ground and loses 50% of its energy and rises back to height of 10 m . Then the velocity V_{0} is
1) $7 \mathrm{~m} / \mathrm{s}$
2) $10 \mathrm{~m} / \mathrm{s}$
3) $14 \mathrm{~m} / \mathrm{s}$
4) $16 \mathrm{~m} / \mathrm{s}$
115. A bomb moving with velocity $(40 \hat{\mathrm{i}}+50 \hat{\mathrm{j}}-25 \hat{\mathrm{k}}) \mathrm{m} / \mathrm{sec}$ explode into two pieces of mass ratio $1: 4$. After explosion the smaller piece moves away with velocity $(200 \hat{\mathrm{i}}+70 \hat{\mathrm{j}}+15 \hat{\mathrm{k}}) \mathrm{m} / \mathrm{sec}$. The velocity of larger piece after explosion is
1) $45 \hat{j}-35 \hat{k}$
2) $45 \hat{i}-35 \hat{j}$
3) $45 \hat{\mathrm{k}}-35 \hat{\mathrm{j}}$
4) $-35 \hat{i}+45 \hat{k}$
116. A body of mass $m_{1}=4 \mathrm{~kg}$ moves at $5 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$ and another body of mass $\mathrm{m}_{2}=2 \mathrm{~kg}$ moves at $10 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$. The kinetic energy of centre of mass is
1) $\frac{200}{3} \mathrm{~J}$
2) $\frac{500}{3} \mathrm{~J}$
3) $\frac{400}{3}$ J
4) $\frac{800}{3} \mathrm{~J}$
117. A ball falls from a height h and rebounds after striking the floor. The coefficient of restitution is e. The maximum distance covered before it comes to rest is
1) $\frac{\left(1-e^{2}\right) h}{e^{2}}$
2) $\frac{\left(1+e^{2}\right) h}{e^{2}}$
3) $\left(\frac{1+e^{2}}{1-e^{2}}\right) h$
4) $\frac{e^{2} h}{1-e^{2}}$

Eamcet-2010 Engineering (Physics)

118. An object takes n times as much time as to slide down a 45° rough inclined plane as it takes to slide down a perfectly smooth inclined plane of the same inclination. The coefficient of kinetic friction between the object and the rough incline is given by
1) $\left(1-\frac{1}{\mathrm{n}^{2}}\right)$
2) $\left(\frac{1}{1-\mathrm{n}^{2}}\right)$
3) $\sqrt{1-\frac{1}{\mathrm{n}^{2}}}$
4) $\sqrt{1+\frac{1}{n^{2}}}$
119. The moment of Inertia of a disc, of mass M and radius R , about an axis which is a tangent and parallel to its diameter is
1) $\frac{1}{2} \mathrm{MR}^{2}$
2) $\frac{3}{4} \mathrm{MR}^{2}$
3) $\frac{1}{4} \mathrm{MR}^{2}$
4) $\frac{5}{4} \mathrm{MR}^{2}$
120. A fly-wheel of mass 25 kg has a radius of 0.2 m . It is making 240 rpm . What is the torque necessary to bring to rest in 20 sec ?
1) $2 \pi \mathrm{Nm}$
2) $0.2 \pi \mathrm{Nm}$
3) $\frac{2}{\pi} \mathrm{Nm}$
4) $4 \pi \mathrm{Nm}$

| 81$) \mathbf{2}$ | $82) \mathbf{4}$ | $83) \mathbf{3}$ | $84) \mathbf{2}$ | $85) \mathbf{2}$ | $86) \mathbf{2}$ | $87) \mathbf{2}$ | $88) \mathbf{4}$ | $89) \mathbf{2}$ | $90) \mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 91$) \mathbf{4}$ | $92) \mathbf{4}$ | $93) \mathbf{3}$ | $94) \mathbf{4}$ | $95) \mathbf{4}$ | $96) \mathbf{3}$ | $97) \mathbf{2}$ | $98) \mathbf{4}$ | $99) \mathbf{4}$ | $100) \mathbf{2}$ |
| 101$) \mathbf{1}$ | $102) \mathbf{2}$ | $103) \mathbf{4}$ | $104) \mathbf{1}$ | $105) \mathbf{2}$ | $106) \mathbf{1}$ | $107) \mathbf{3}$ | $108) \mathbf{2}$ | $109) \mathbf{1}$ | $110) \mathbf{4}$ |
| 111$) \mathbf{2}$ | $112) \mathbf{2}$ | $113) \mathbf{2}$ | $114) \mathbf{3}$ | $115) \mathbf{1}$ | $116) \mathbf{3}$ | $117) \mathbf{3}$ | $118) \mathbf{1}$ | $119) \mathbf{4}$ | $120) \mathbf{2}$ |

EAMCET-2010 ENGINEERING-CHEMISTRY

121. A solution of concentration ${ }^{\prime} C^{\prime} g$ equiv/litre has a specific resistance R. The equivalent conductance of the solution is "
1) R / C
2) C / R
3) $\frac{1000}{\mathrm{RC}}$
4) $\frac{1000 \mathrm{R}}{\mathrm{C}}$
122. Assertion (A) : White tin is an example of tetragonal system

Reason (R) : For a tetragonal system $a=b$ and c and $\alpha=\beta \alpha=\beta=\gamma \neq 90^{\circ}$.
The correct answer is :

1) Both A and R are true and R explains A
2) Both A and R are true and R does not explains A
3) A is true, R is false
4) A is false, R is true
123. What is the slope of the straight line for the graph drawn between $\ln \mathrm{k}$ and $\frac{1}{\mathrm{~T}}$, where k is the rate constant of a reaction at temperature T ?
1) $\frac{-E_{a}}{2.303 R}$
2) $\frac{-E_{a}}{R}$
3) $\frac{E_{a}}{R}$
4) $\frac{R}{E_{a}}$
124. If the equilibrium constant for the reaction
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$ is K
what is the equailibrium constant of
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$?
1) $\frac{1}{\mathrm{~K}}$
2) $\sqrt{\mathrm{K}}$
3) K
4) $\frac{1}{\sqrt{\mathrm{~K}}}$
125. The pH of 0.01 M solution of acetic acid is 5.0. What are the values of $\left[\mathrm{H}^{+}\right]$and K_{a} respectively?
1) $1 \times 10^{-5} \mathrm{M}, 1 \times 10^{-8}$
2) $1 \times 10^{-5} \mathrm{M}, 1 \times 10^{-9}$
3) $1 \times 10^{-4} \mathrm{M}, 1 \times 10^{-8}$
4) $1 \times 10^{-3} \mathrm{M}, 1 \times 10^{-8}$
126. A system is provided with 50 Joules of heat and the work done on the system is 10 Joules. What is the change in internal energy of the system in Joules?
1) 60
2) 40
3) 50
4) 10
127. A micelle formed during the cleansing action by soap is
1) A discrete particle of soap
2) Aggregated particles of soap and dirt
3) A discrete particle of dust
4) An aggregated particle of dust and water
128. The orange coloured compound of formed when $\mathrm{H}_{2} \mathrm{O}_{2}$ is added to TiO_{2} solution acidified with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is
1) $\mathrm{Ti}_{2} \mathrm{O}_{3}$
2) $\mathrm{H}_{2} \mathrm{Ti}_{2} \mathrm{O}_{8}$
3) $\mathrm{H}_{2} \mathrm{TiO}_{3}$
4) $\mathrm{H}_{2} \mathrm{TiO}_{4}$
129. Solvay process is used in the manufacture of
1) $\mathrm{K}_{2} \mathrm{CO}_{3}$
2) KHCO_{3}
3) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
4) CaCl_{2}
130. Diborane react with ammonia under different conditions to give a variety of products. Which one among the following is not formed in these reactions
1) $\mathrm{B}_{2} \mathrm{H}_{6} .2 \mathrm{NH}_{3}$
2) $\mathrm{B}_{12} \mathrm{H}_{12}$
3) $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$
4) $(\mathrm{BN})_{n}$
131. Which one of the following is the mineral for tin?
1) galena
2) cerussite
3) cassiterite
4) anglesite
132. The oxide of nitrogen formed by thermal decomposition of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is
1) NO
2) $\mathrm{N}_{2} \mathrm{O}$
3) $\mathrm{N}_{2} \mathrm{O}_{5}$
4) NO_{2}
133. Which one of the following is most acidic?
1) $\mathrm{H}_{2} \mathrm{O}$
2) $\mathrm{H}_{2} \mathrm{~S}$
3) $\mathrm{H}_{2} \mathrm{Te}$
4) $\mathrm{H}_{2} \mathrm{Se}$
134. Which one of the following is formed apart from sodium chloride when chlorine reacts with hot concentrated sodium hydroxide?
1) NaOCl
2) NaClO_{3}
3) NaClO_{2}
4) NaClO_{4}
135. Helium mixed with oxygen is used in the treatment of
1) Beri beri
2) Burning feet
3) Joints burning
4) Asthma
136. Which of the following is a correct statement ?
1) Aqueous solutions of Cu^{+}and Zn^{2+} are colourless
2) Aqueous solutions of Cu^{2+} and Zn^{2+} are colour less
3) Aqueous solutions of Fe^{3+} is green in colour
4) Aqueous solutions of MNO_{4}^{-}is colourless
137. The chemical reaction that involves roasting process is
1) $\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
2) $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
3) $2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Zno}+3 \mathrm{SO}_{2}$
4) $\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}$
138. The acceptable level of carbon monoxide gas (CO) in the atmosphere in ppm level in
1) 9
2) 250
3) 49
4) 850
139. The conversion of O -acylated phenol in presence of AlCl_{3} to C - acylated phenol is an example for this type of organic reaction
1) Addition reaction
2) Substitution reaction
3) Molecular rearrangement
4) Elimination reaction
140. Diels - Alder reaction will not take place with which of the following reactants?
1)

2)

3)

and

4)

141. In which of the following ortho/para substitution by an electrophile is very facile?

1) Nitrobenzene
2) Phenol
3) Benzoic acid
4) Acetophenone
142. Which one of the following pairs of 2, 3-butane diol is enantiomeric ?
1) $2 R, 3 R$ and $2 S, 3 S$
2) $2 \mathrm{~S}, 3 \mathrm{~S}$ and $2 \mathrm{~S}, 3 \mathrm{R}$
3) $2 R, 3 R$ and $2 R, 3 S$
4) $2 \mathrm{~S}, 3 \mathrm{~S}$ and $2 \mathrm{R}, 3 \mathrm{~S}$
143. The two eneantiomers of secondary butyl chloride differ from each other in which one of the following properties ?
1) Boiling point
2) Specific rotation
3) Density
4) $\mathrm{C}-\mathrm{CI}$ bond length
144. Identify the product (A) of the following reaction

1) Ethyl alcohol
2) Ethyl propionate
3) Ethanoic acid
4) Ethyl acetate
145. Which one of the following gives yellow precipitate with iodine and NaOH solution
1) $\mathrm{CH}_{3}-\mathrm{CHO}$
2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COC}_{6} \mathrm{H}_{5}$
3) HCHO
4) $\mathrm{CH}_{3} \mathrm{OH}$
146. Identify A, B and C in the following reactions

A
B
C
1) $\mathrm{CH}_{3} \mathrm{NC}$
$\mathrm{CH}_{3} \mathrm{NHCH}_{3}$

2) $\mathrm{CH}_{3} \mathrm{CN}$
$\mathrm{CH}_{3} \mathrm{CONH}_{2}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
3) $\mathrm{CH}_{3} \mathrm{CN}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$
4) $\mathrm{CH}_{3} \mathrm{CN}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
$\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
147. Reduction of nitrobenzene with Zn and alcoholic KOH solution results in the formation of the following compound
1) Hydrazobenzene
2) Azobenzene
3) Aniline
4) Phenyl hydroxyl amine
148. If the number average molecular weight and weight and weight average molecular weight of a polymer are 40,000 and 60,000 respectively, the polydispersity index of the polymer will be
1) >1
2) <1
3) 1
4) Zero
149. The AT/GC ratio in human beings is (where $\mathrm{A}=$ adenine, $\mathrm{T}=$ thymine, $\mathrm{G}=$ Guanine, $\mathrm{C}=$ Cytosine)
1) 1
2) 1.52
3) 9.3
4) 2
150. Identify the non-narcotic analgesic from the following
1) Diazepam
2) Ibuprofen
3) Formalin
4) Terpineol
151. Which one of the following transitions of an electron in hydrogen atom emits radiation of the lowest wavelength ?
1) $\mathrm{n}_{2}=\infty$ to $\mathrm{n}_{1}=2$
2) $\mathrm{n}_{2}=4$ to $\mathrm{n}_{1}=3$
3) $\mathrm{n}_{2}=2$ to $\mathrm{n}_{1}=1$
4) $\mathrm{n}_{2}=5$ to $\mathrm{n}_{1}=3$
152. Which one of the following conditions incorrect for a well behaved wave function (φ) ?
1) φ must be finite
2) φ must be single valued 3) φ must be infinite
3) φ must be continuous
153. The electron affinity values of elements $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are respectively $-135,-60,-200$ and $-348 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The outer electronic configuration of element B is
1) $3 s^{2} 3 p^{5}$
2) $3 s^{2} 3 p^{4}$
3) $3 s^{2} 3 p^{3}$
4) $3 s^{2} 3 p^{2}$
154. Match the following

List I (Molecule List II (Number of lone pairs on central atom)
A) NH_{3}
I) Two
B) $\mathrm{H}_{2} \mathrm{O}$
II) Three
C) XeF_{2}
III) Zero
D) CH_{4}
IV) Four
V) One

	A	B	C	D		A	B	C	D
$1)$	V	I	III	I	$2)$	III	I	II	V
$2)$	V	I	II	III	$4)$	I	V	III	IV

155. The ratio of anion radius to cation radius of a crystal is $10: 9.3$. Then, the coordination number of the cation in the crystal is
1) 2
2) 4
3) 6
4) 8
156. The number of molecules of CO_{2} liberated by the complete combustion of 0.1 gram atom of graphite in air is
1) 3.01×10^{22}
2) 6.02×10^{23}
3) 6.02×10^{22}
4) 3.01×10^{23}
157. CH_{4} diffuses two times faster than a gas X . The number of molecules present in 32 g of gas X is $(\mathrm{N}$ is Avogadro number)
1) N
2) $\frac{N}{2}$
3) $\frac{N}{4}$
4) $\frac{\mathrm{N}}{16}$
158. If BaCl_{2} ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is
1) 2.6
2) 0.4
3) 0.8
4) 2.4
159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in Y

$\mathrm{X} / \mathrm{mol} \mathrm{lit}^{-1}$	Y / mm of Hg
0.10	P_{1}
0.25	P_{2}
0.01	P_{3}

The correct of vapour pressure is

1) $P_{1}<P_{2}<P_{3}$
2) $\mathrm{P}_{3}<\mathrm{P}_{2}<\mathrm{P}_{1}$
3) $\mathrm{P}_{3}<\mathrm{P}_{1}<\mathrm{P}_{2}$
4) $P_{2}<P_{1}<P_{3}$
160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240 , 349 and $229 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ respectively. The equivalent conductance of benzoic acid in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ at the same conditions is
1) 80
2) 328
3) 360
4) 408

121$) \mathbf{3}$	$122) \mathbf{3}$	$123) \mathbf{2}$	$124) \mathbf{4}$	$125) \mathbf{1}$	$126) \mathbf{1}$	$127) \mathbf{2}$	$128) \mathbf{4}$	$129) \mathbf{3}$	$130) \mathbf{2}$
131$) \mathbf{3}$	$132) \mathbf{2}$	$133) \mathbf{3}$	$134) \mathbf{2}$	$135) \mathbf{4}$	$136) \mathbf{1}$	$137) \mathbf{3}$	$138) \mathbf{1}$	$139) \mathbf{3}$	$140) \mathbf{1}$
141$) \mathbf{2}$	$142) \mathbf{1}$	$143) \mathbf{2}$	$144) \mathbf{2}$	$145) \mathbf{1}$	$146) \mathbf{3}$	$147) \mathbf{1}$	$148) \mathbf{1}$	$149) \mathbf{2}$	$150) \mathbf{2}$
151$) \mathbf{3}$	$152) \mathbf{3}$	$153) \mathbf{3}$	$154) \mathbf{3}$	$155) \mathbf{4}$	$156) \mathbf{3}$	$157) \mathbf{2}$	$158) \mathbf{1}$	$159) \mathbf{4}$	$160) \mathbf{3}$

