EAMCET-2010 ENGINEERING-MATHS

Let $\vec{a} = \vec{i} - 2\vec{j} + 3\vec{k}$, $\vec{b} = 2\vec{i} + 3\vec{j} - \vec{k}$ and $\vec{c} = \lambda\vec{i} + \vec{j} + (2\lambda - 1)\vec{k}$. If \vec{c} parallel to the plane containing 1. $\vec{a}.\vec{b}$ then $\lambda =$ 1) 0 2)13) -14) 2If three unit vectors $\vec{a}, \vec{b}, \vec{c}$ satisfy $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ then the angle between \vec{a} and \vec{b} is: 2. 1) $\frac{2\pi}{2}$ 2) $\frac{5\pi}{6}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{6}$ $(\vec{a}+2\vec{b}-\vec{c}).(\vec{a}-\vec{b})\times(\vec{a}-\vec{b}-\vec{c}) =$ 3. 1) $-\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ 2) $2\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ 3) $3\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ 4) 0 $\vec{u} = \vec{a} - \vec{b}, \vec{v} = \vec{a} + \vec{b}, |\vec{a}| = |\vec{b}| = 2 \Rightarrow |\vec{u} \times \vec{v}| =$ 4. 1) $2\sqrt{16 - (\vec{a}.\vec{b})^2}$ 2) $\sqrt{16 - (\vec{a}.\vec{b})^2}$ 3) $2\sqrt{4 - (\vec{a}.\vec{b})^2}$ 4) $\sqrt{4 - (\vec{a}.\vec{b})^2}$ If the angle θ between the vectors $\vec{a} = 2x^2\vec{i} + 4x\vec{j} + \vec{k}$ and $\vec{b} = 7\vec{i} - 2\vec{j} + x\vec{k}$ is such that $90^0 < \theta < 180^0$ 5. then x lies in the interval: 1) $\left[0,\frac{1}{2}\right]$ $(1,\frac{3}{2})$ 2) $\left|\frac{1}{2}, 1\right|$ 4) $\left|\frac{1}{2}, \frac{3}{2}\right|$ Let OA, OB, OC be the co-terminal edges of a rectangular parallelopiped of volume V and let P be the 6. vertex opposite to O. Then $\begin{bmatrix} \overrightarrow{AP} & \overrightarrow{BP} & \overrightarrow{CP} \end{bmatrix} =$ 1) 2V 2) 12V 3) $3\sqrt{3}V$ 4) 0 An urn A contains 3 white and 5 black balls. Another urn B contains 6 white and 8 black balls. A ball is 7. picked from A at random and then transferred to B. Then a ball is picked at random from B. The probability that it is a white ball is: 1) $\frac{14}{40}$ 3) $\frac{16}{40}$ 2) $\frac{15}{40}$ 4) $\frac{17}{40}$ If A_i (i = 1, 2, 3, n) are n independent events with $P(A_i) = \frac{1}{1+i}$ for each i, then the probability 8. that none of A_i occurs is 3) $\frac{n}{n+2}$ 4) $\frac{1}{n+1}$ 1) $\frac{n-1}{n+1}$ 2) $\frac{n}{n+1}$ Suppose A and B are two events such that $P(A \cap B) = \frac{3}{25}$ and $P(B-A) = \frac{8}{25}$. Then P(B) = 9. 3) $\frac{1}{11}$ 1) $\frac{11}{25}$ 2) $\frac{3}{11}$ 4) $\frac{9}{11}$ Suppose that a random variable X follows Poisson distribution. If P(X = 1) = P(X = 2) then P(X = 5) =10. 3) $\frac{4}{15}e^{-2}$ 4) $\frac{7}{9}e^{-2}$ 1) $\frac{2}{2}e^{-2}$ 2) $\frac{3}{4}e^{-2}$

11. If the mean and variance of a binomial variable X are 2 and 1 respectively, then P(X > 1) =15 4) $\frac{1}{5}$ 2) $\frac{1}{16}$ 3) $\frac{1}{8}$ 1) $\frac{1}{3}$

If a straight line L is perpendicular to the line 4x - 2y = 1 and forms a triangle of area 4 square units 12. with the coordinate axes, then an equation of the line L is 4) 4x - 2y - 8 = 01) 2x + 4y + 7 = 02) 2x - 4y + 8 = 03) 2x + 4y + 8 = 0

- 13. The image of the point (4, -13) with respect to the line 5x + y + 6 = 0 is 4) (-4, 13) 1) (-1, -14)2)(3, 4)3) (1, 2)
- The image of the line x + y 2 = 0 in the Y axis is 14. 1) x - y + 2 = 02) y - x + 2 = 03) x + y + 2 = 04) x + y - 2 = 0A straight line which makes equal intercepts on positive X and Y axes and which is at a distance 1 unit 15.

from the origin intersects the straight line $y = 2x + 3 + \sqrt{2}$ at (x_0, y_0) . Then $2x_0 + y_0 =$

1)
$$3+\sqrt{2}$$
 2) $\sqrt{2}-1$ 3) 1 4) 0

16. The distance between the two lines represented by $8x^2 - 24xy + 18y^2 - 6x + 9y - 5 = 0$ is

1) 0 2)
$$\frac{3}{4\sqrt{13}}$$
 3) $\frac{6}{\sqrt{13}}$ 4) $\frac{7}{2\sqrt{13}}$

A pair of perpendicular lines passes through the origin and also through the points of intersection of the 17. curve $x^2 + y^2 = 4$ with x + y = a, where a > 0. Then a =1) 2 2) 3 3) 4 4) 5

If $3x^2 - 11xy + 10y^2 - 7x + 13y + k = 0$ denotes a pair of straight lines, then the point of intersection of 18. the lines is (-3, 1) $1)(1 \ 3)$ 2)(3 1)(1 - 3)

19. The equation of the radical axis of the pair of circles
$$7x^2 + 7y^2 - 7x + 14y + 18 = 0$$
 and $4x^2 + 4y^2 - 7x + 8y + 20 = 0$ is

1)
$$x - 2y - 5 = 0$$

1) $x - 2y - 5 = 0$
2) $2x - y + 5 = 0$
3) $21x - 68 = 0$
3) $21x - 68 = 0$
4) $23x - 68 = 0$
1f the lengths of tangents drawn to the circles: $x^2 + y^2 - 8x + 40 = 0$; $5x^2 + 5y^2 - 25x + 80 = 0$;

 $x^2 + y^2 - 8x + 16y + 160 = 0$ from the point P are equal, then P =

1)
$$\left(8,\frac{15}{2}\right)$$
 2) $\left(-8,\frac{15}{2}\right)$ 3) $\left(8,\frac{-15}{2}\right)$ 4) $\left(-8,\frac{-15}{2}\right)$

The equation of the circle concentric with the circle $x^2 + y^2 - 6x + 12y + 15 = 0$ and of double its area is 21. 1) $x^2 + y^2 - 6x + 12y - 15 = 0$ 2) $x^2 + y^2 - 6x + 12y - 30 = 0$ 4) $x^2 + y^2 - 6x + 12y - 20 = 0$ 3) $x^2 + y^2 - 6x + 12y - 25 = 0$

If the circle $x^2 + y^2 + 2x + 3y + 1 = 0$ cuts another circle $x^2 + y^2 + 4x + 3y + 2 = 0$ in A and B, then the 22. equation of the circle with AB as a diameter is 1) $x^2 + y^2 + x + 3y + 3 = 0$ 2) $2x^2 + 2y^2 + 2x + 6y + 1 = 0$

- 3) $x^2 + y^2 + x + 6y + 1 = 0$ 4) $2x^2 + 2y^2 + x + 3y + 1 = 0$
- The length of the common chord of the cirlces of radii 15 and 20 whose centres are 25 units of distance 23. apart, is 2) 16 3) 24 4) 25
 - 1) 12

20.

Let M be the foot of the perpendicular from a point P on the parabola $y^2 = 8(x - 3)$ onto its directrix and 24. let S be the focus of the parabola. If $\triangle SPM$ is an equilateral triangle, then P =

1)
$$(4\sqrt{3},8)$$
 2) $(8,4\sqrt{3})$ 3) $(9,4\sqrt{3})$ 4) $(4\sqrt{3},9)$

- 25. The equation of the hyperbola which passes through the point (2,3) and has the asymptotes 4x + 3y - 7 = 0and x - 2y - 1 = 0 is
 - 1) $4x^2 + 5xy 6y^2 11x + 11y + 50 = 0$ 2) $4x^2 + 5xy - 6y^2 - 11x + 11y - 43 = 0$ 4) $x^2 - 5xy - y^2 - 11x + 11y - 43 = 0$ 3) $4x^2 - 5xy - 6y^2 - 11x + 11y + 57 = 0$

The product of the perpendicular distances from any point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ to its 26.

asymptotes is

1)
$$\frac{a^2b^2}{a^2-b^2}$$
 2) $\frac{a^2b^2}{a^2+b^2}$ 3) $\frac{a^2+b^2}{a^2b^2}$ 4) $\frac{a^2-b^2}{a^2b^2}$

Page No.2

If the lines 2x + 3y + 12 = 0, x - y + k = 0 are conjugate with respect to the parabola $y^2 = 8x$, then k = 027. 2) $\frac{7}{2}$ 3) -12 (4) - 21) 10 The length of the latus rectum of the conic $\frac{5}{\pi} = 2 + 3\cos\theta + 4\sin\theta$ is 28. 1) 24) 5 2) 33) 4The point dividing the join of (3, -2, 1) and (-2, 3, 11) in the ratio 2 : 3 is 29. (0, 6, -1)1)(1, 1, 4)(1, 0, 5)3) (2, 3, 5) If α, β, γ are the roots of the equation $x^3 - 6x^2 + 11x - 6 = 0$ and if $a = \alpha^2 + \beta^2 + \gamma^2, b = \alpha\beta + \beta\gamma + \gamma\alpha$ 30. and $c = (\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$, then the correct inequality among the following is 1) a < b < c 2) b < a < c 3) b < c < a 4) c < a < b A plane meets the coordinate axes at A, B, C so that the centroid of the triangle ABC is (1, 2, 4). Then 31. the equation of the plane is 1) x + 2y + 4z = 122) 4x + 2y + z = 123) x + 2y + 4z = 34) 4x + 2y + z = 3If (2, 3, -3) is one end of a diameter of the sphere $x^2 + y^2 + z^2 - 6x - 12y - 2z + 20 = 0$, then the other end 32. of the diameter is 1) (4, 9, -1)2) (4, 9, 5) 3) (-8, -15, 1) 4) (8, 15, 5) $Lt_{x\to 0} \frac{\tan x - \sin x}{r^2} =$ 33. 3) $\frac{1}{2}$ 4) $-\frac{1}{2}$ 1) 0 2) 1 If $f: R \to R$ defined by $f(x) = \begin{cases} \frac{1+3x^2-\cos 2x}{x^2}, & \text{for } x \neq 0 \\ k, & \text{for } x = 0 \end{cases}$ is continuous at x = 0, then k = 034. 1) 1 2) 5 3) 6 4) 0 $f(x) = (\cos x) (\cos 2x)$ $(\cos nx) \Rightarrow f'(x) + \sum_{r=1}^{n} (r \tan rx) f(x) =$ 35. 1) f(x)2) 0 3) -f(x)4) 2f(x) $y = \cos^{-1}\left(\frac{a^2 - x^2}{a^2 + x^2}\right) + \sin^{-1}\left(\frac{2ax}{a^2 + x^2}\right) \Rightarrow \frac{dy}{dx} =$ 36. 1) $\frac{a}{r^2 + a^2}$ 2) $\frac{2a}{r^2 + a^2}$ 3) $\frac{4a}{r^2 + a^2}$ 4) $\frac{a^2}{a^2 + a^2}$ $f(x) = \sin x + \cos x \Rightarrow f\left(\frac{\pi}{4}\right) f^{(iv)}\left(\frac{\pi}{4}\right) =$ 37. 1) 13) 3 4) 4 (Here y_n denotes $\frac{d^n y}{dx^n}$) $y = \sin(m \sin^{-1} x) \Rightarrow (1 - x^2) y_2 - x y_1 =$ 38. 1) $m^2 v$ 2) $-m^2y$ 3) $2m^2y$ 4) $-2m^2y$ The height of the cone of maximum volume inscribed in a sphere of radius R is 39. 1) $\frac{R}{2}$ 2) $\frac{2R}{2}$ 3) $\frac{4R}{3}$ The longest distance of the point (a, 0) from the curve $2x^2 + y^2 = 2x$ is 40. ve $2x^2 + y^2 = 2x$ is 3) $\sqrt{1 - 2a + 2a^2}$ 4) $\sqrt{1 - 2a + 3a^2}$ 2) |1-a|1) 1 + a

Eamcet-2010 Engineering (Maths) 41. A variable triangle ABC is inscribed in a circle of diameter x units. At a particular instant, the rate of

change in side a is $\frac{x}{2}$ times the rate of change in its opposite angle A. Then A =

1)
$$\frac{\pi}{2}$$
 2) $\frac{\pi}{3}$ 3) $\frac{\pi}{4}$ 4) $\frac{\pi}{6}$
42. $u = \sin^{-1}\left(\frac{x^{2} + y^{2}}{x + y}\right) \Rightarrow x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} =$
1) $3u$ 2) $4u$ 3) $3\sin u$ 4) $3\tan u$
43. $\int \frac{7x^{4} + 8x^{7}}{(1 + x + x^{3})^{2}} dx = f(x) + c \Rightarrow f(x) =$
1) $\frac{x^{8}}{1 + x + x^{8}}$ 2) $28\log(1 + x + x^{5})$ 3) $\frac{1}{1 + x + x^{8}}$ 4) $\frac{-1}{1 + x + x^{8}}$
44. If $f_{n}(x) = \log \log \log \qquad second s$

Page No.4

Let R denote the set of all real numbers and R^+ denote the set of all positive real numbers. For the 52. subsets A and B of R define $f: A \to B$ by $f(x) = x^2$ for $x \in A$. Observe the two lists given below: List I List II (i) f is one-one and onto if (a) $A = R^+, B = R$ (ii) f is one-one but not onto if **(b)** A = B = R(iii) f is onto but not one-one if (c) $A = R, B = R^+$ (iv) f is neither one-one nor onto if (d) $A = B = R^+$ The correct matching of List I to List II is 1) а b с d 2) d b а с 3) d 4) d b а b с a с The numbers $a_n = 6^n - 5n$ for n = 1,2,3, when divided by 25 leave the remainder : 53. 2) 7 3) 3 4) 1 54. Let $n = 1! + 4! + 7! + \dots + 400!$. Then ten's digit of n is : 1) 13) 2 4) 7 Let $a_n = \frac{10^n}{n!}$ for n = 1,2,3, Then the greatest value of n for which a_n is the greatest is : 55. 2) 20 3) 10 4) 8 A polygon has 54 diagonals. Then the number of its sides is : 56. 1)72) 9 3) 10 4) 12 $(1 + 2\mathbf{x} + 3\mathbf{x}^2)^{10} = a_0 + a_1 x + a_2 x^2 + \dots + a_{20} x^{20} \Rightarrow \frac{a^2}{a}$ 57. 1) 10.5 2) 21 3) 10 4) 5.5 For $|x| < \frac{1}{5}$, the coefficient of x³ in the expansion of $\frac{1}{(1-5x)(1-4x)}$ is : 58. 3) 371 1) 369 2) 370 4) 372 $\frac{3x^{2} + x + 1}{(x-1)^{4}} = \frac{a}{(x-1)} + \frac{b}{(x-1)^{2}} + \frac{c}{(x-1)^{3}} + \frac{d}{(x-1)^{4}} \Rightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix} =$ 59. 1) $\begin{bmatrix} 3 & 7 \\ 5 & 0 \end{bmatrix}$ $\begin{array}{c|ccc}
0 & 3 \\
7 & 5
\end{array}$ $\begin{array}{c|ccc} 0 & 7 \\ 3 & 3 & 5 \end{array}$ $(4) \begin{vmatrix} 3 & 5 \\ 7 & 0 \end{vmatrix}$ **60**. $\log_4 2 - \log_8 2 + \log_{16} 2 - \dots =$ 1) e^{2} 2) $\log_{2} 2$ 3) $1 + \log_{2} 3$ 4) $1 - \log_{2} 2$ For $x \in R$, the least value of $\frac{x^2 - 6x + 5}{x^2 + 2x + 1}$ is : 61. 2) $-\frac{1}{2}$ 3) $-\frac{1}{4}$ 4) $-\frac{1}{2}$ 1) -1**62.** $\left\{ x \in R : \frac{14x}{x+1} - \frac{9x-30}{x-4} < 0 \right\} =$ 1)(-1, 4)2) $(1,4) \cup (5,7)$ (1,7)4) $(-1, 1) \mid (4,6)$ The condition that the roots of $x^3 - bx^2 + cx - d = 0$ are in geometric progression is : **63**. 1) $c^3 = b^3 d$ 2) $c^2 = b^2 d$ 3) $c = bd^{3}$ 4) $c = bd^2$ Let $\alpha \neq 1$ be a real root of the equation $x^3 - ax^2 + ax - 1 = 0$, where $a \neq -1$ is a real number. Then **64**. a root of this equation, among the following, is : $\frac{1}{v^2}$

1)
$$\alpha^2$$
 2) $-\frac{1}{\alpha}$ 3) $\frac{1}{\alpha}$ 4) $-\frac{1}{\alpha}$

$$\begin{aligned} f(x) &= \begin{vmatrix} 2\cos x & 1 & 0 \\ x - \frac{\pi}{2} & 2\cos x & 1 \\ 0 & 1 & 2\cos x \end{vmatrix} \Rightarrow f(\pi) = \\ 1 & 0 & 2 \end{pmatrix} 2 & 3 \end{pmatrix} \frac{\pi}{2} & 4 \end{pmatrix} \pi - 6 \\ \begin{aligned} f(x) &= \begin{pmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} = 0, x \neq y \neq z \Rightarrow 1 + xyz = \\ \end{aligned} \\ \begin{aligned} f(x) &= \begin{pmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} = 0, x \neq y \neq z \Rightarrow 1 + xyz = \\ \end{aligned} \\ \begin{aligned} f(x) &= \begin{pmatrix} x & 1 & 1 & 1 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} = 0, x \neq y \neq z \Rightarrow 1 + xyz = \\ \end{aligned} \\ \begin{aligned} f(x) &= \begin{pmatrix} x & 1 & 1 & 1 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} = 0, x \neq y \neq z \Rightarrow 1 + xyz = \\ \end{aligned} \\ \begin{aligned} f(x) &= \begin{pmatrix} x & 1 & 1 & 1 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} = 0, x \neq y \neq z \Rightarrow 1 + xyz = \\ \end{aligned} \\ \begin{aligned} f(x) &= \begin{pmatrix} x & 1 & 1 & 1 \\ y & y^2 & 1 + x^3 \\ (k+1)^3 x + (k+2)^3 y = (k+3)^3 \\ (k+1)x + (k+2)y = k+3 \\ (k+1)^3 x + (k+2)y = k+3 \\ (k+1)^3 x + (k+2)y = k+3 \\ (k+1)x + (k+2)y = k+3 \\ (k+$$

76.	$\tan^{-1} x + \tan^{-1} y + \tan^{-1} y$	$z = \frac{\pi}{2}$		
		$\Rightarrow 1 - xy - yz - zx =$		
	1) 1	2) 0	3) -1	4) 2
77.	$\tanh^{-1} x = a \log\left(\frac{1+x}{1-x}\right)$	$ x < 1 \Rightarrow a =$		
	1) 1	2) 2	3) $\frac{1}{2}$	4) $\frac{1}{4}$
78.	If $\Delta = a^2 - (b-c)^2$, is	the area of the triangle AB	C, then tan A =	
	1) $\frac{1}{16}$	2) $\frac{8}{15}$	3) $\frac{3}{4}$	4) $\frac{4}{3}$
79.	In a traingle ABC, C =	90°. Then $\frac{a^2-b^2}{a^2+b^2} =$		
	1) sin $(\mathbf{A} + \mathbf{B})$	2) sin $(A - B)$	3) $\cos (A + B)$	4) $\cos(A - B)$

sin (A + B)
 sin (A - B)
 sin (A - B)
 cos (A - B)
 and in the same straight line with it is 90°. Then the height of the tower is :

1)
$$a^2b$$
 2) ab^2 3) \sqrt{ab} 4) ab

1)	1	2)	1	3)	3	4)	1	5)	1	6)	1	7)	4	8)	4	9)	1	10)	3
11)	2	12)	3	13)	1	14)	1	15)	2	16)	4	17)	1	18)	2	19)	3	20)	3
21)	1	22)	2	23)	3	24)	3	25)	3	26)	2	27)	3	28)	4	29)	2	30)	2
31)	2	32)	2	33)	1	34)	2	35)	2	36)	3	37)	2	38)	2	39)	3	40)	3
41)	2	42)	4	43)	1	44)	1	45)	1	46)	3	47)	4	48)	3	49)	2	50)	4
51)	4	52)	3	53)	4	54)	2	55)	3	56)	4	57)	1	58)	1	59)	2	60)	4
61)	4	62)	4	63)	1	64)	3	65)	2	66)	1	67)	2	68)	1	69)	4	70)	2
71)	3	72)	1	73)	2	74)	1	75)	1	76)	2	77)	3	78)	2	79)	2	80)	3

EAMCET-2010 ENGINEERING-PHYSICS

A launching vehiclecarrying an artificial satellite of mass 'm' is set for launch on the surface of the earth of 81. mass 'M' and radius 'R'. If the satellite is intended to move in a circular orbit of radius 7R, the minimum energy required to be spent by the launching vehicle on the satellite is (Gravitational constant = G) 3) $\frac{GMm}{7R}$ 1) $\frac{GMm}{R}$ 2) $\frac{13GMm}{14R}$ 4) $\frac{GMm}{14R}$ The displacements of two particles of same mass executing SHM are represented by the equations 82. $x_1 = 4 \sin\left(10t + \frac{\pi}{6}\right)$ and $x_2 = 5 \cos(\omega t)$. The value of ' ω ' for which the energy of both the particles remain same is 2) 6 unints 1) 16 units 3) 4 units 4) 8 units Match the following 83. List - I List - II A) Hooke's law I) Tangential strain B) Shearing strain II) Temporary loss of elastic property C) Bulk strain **III**) Elastic limit D) Elastic Fatigue IV) 3 times the linear strain Α B <u>C</u> D B С D A 1) Π Ι IV III IV Ι Π III 2) 3) III Ι IV II 4) Ι Π III IV The excess pressure inside a spherical soap bubble of radius 1 cm is balanced by a column of oil (Sp. gr.= 84. 0.8), 2 mm high, the surface tension of the bubble is 1) 3.92 N/m 2) 0.0392 N/m 3) 0.392 N/m 4) 0.00392 N/m Water from a tap emerges vertically downwards with initial velocity 4 ms⁻¹. The cross - sectional area of the 85. tap is A. The flow is steady and pressure is constant throughout the stream of water. The distance h vertically below the tap, where the cross - sectional area of the stream becomes $\left(\frac{2}{3}\right)A$, is $(g = 10 \text{ ms}^2)$ 1) 0.5 m 2) 1 m 3) 1.5 m 4) 2.2 m A bimetallic strip is formed out of two identical strips, one of copper and the other of brass . The coefficients 86. of linear expansion of the two mwtals are α_c and α_B . On heating, the temperature of the strip increases by ΔT and the strip bonds to form an arc of radius R. Then R is proportional to 4) $\frac{1}{\sqrt{\Delta T}}$ 2) $\frac{1}{\Delta T}$ 3) $\sqrt{\Delta T}$ 1) ΔT 87. Three rods of equal lengths are joined to form an equilateral triangle ABC. D is the mid - point of AB. The coefficient of linear expansion is α_1 for material of rod AB and α_2 for material of rods AC and BC. If the distance DC remains constant for small changes in temperature, then

1)
$$\alpha_1 = 2\alpha_2$$
 2) $\alpha_1 = 4\alpha_2$ 3) $\alpha_1 = 8\alpha_2$ 4) $\alpha_1 = \alpha_2$

88. An ideal gas expands isothermally from valume V_1 to volume V_2 . it is then compressed to the original volume V_1 adiabaticaly. If P_1 , P_2 and W represent the initial pressure, final pressure and the net work done by the gas respectively during the entire process, then

1) $P_1 > P_2$, W = 0 2) $P_1 > P_2$, W > 0

3)
$$P_2 > P_1$$
, $W > 0$ 4) $P_2 > P_1$, $W < 0$

89. 3 moles of an ideal monoatomic gas performs ABCDA cyclic process as shown infigure below. The gas temperatures are $T_A = 400$ K, $T_B = 800$ K, $T_C = 2400$ K and $T_D = 1200$ K. The work done by the gas is (approximately) (R = 8.314 J/mole K)

- 1) 10 J
- 2) 20 J
- 3) 40 J
- 4) 100 kJ

 $\begin{array}{c} B \\ A \\ \vdots \\ \vdots \\ \end{array}$

- 90. Three rods AB, BC and BD made of the same material and having the same cross- section have been joined as shown in the figure . The ends A, C and D are held at temperatures of 20°C, 80°C and 80°C respectively. If each rod is of same length, then the temperature at the junction B of the three rods is
 - 1) 90°C
 - 2) 60° C
 - 3) 40°C
 - 4) 30°C
- 91. An organ pipe P_1 , closed at one end and containing a gas of density ρ_1 is vibrating inits first harmonic. Another organ pipe P_2 , open at both ends ans containing a gas of density ρ_2 is vibrating in its third harmonic. Both the pipes are in resonance with a given tuning fork. If the compressibility of gases is equal in both pipes, the ratio of the lengths of P_1 and P_2 is (assume the given gases to be monoatomic)
 - 1) 1/3 2) 3 3) $\frac{1}{6}\sqrt{\frac{\rho_1}{\rho_2}}$ 4) $\frac{1}{6}\sqrt{\frac{\rho_2}{\rho_1}}$

92. A sonometer wire has a length of 114 cm, between two fixed ends. Where should two bridges be placed so as to divide the wire into three segments (in cm) whose fundamental frequencies are in the ratio 1 : 3 : 4 ?
1) l₁, l₂, l₃ = 18, 24, 72 2) l₁, l₂, l₃ = 24, 18, 72 3) l₁, l₂, l₃ = 72, 18, 24 4) l₁, l₂, l₃ = 72, 24, 18

93. In an optical fibre, core and cladding were made with materials of refractive indices 1.5 and 1.414 respectively. To observe total internal reflection, what will be the range of incident angle with the axis of optical fibre ?

1)
$$0^{\circ} - 60^{\circ}$$
 2) $0^{\circ} - 48^{\circ}$ 3) $0^{\circ} - 30^{\circ}$ 4) $0^{\circ} - 82^{\circ}$

94. A ray of light passes through an equilateral prism such that the angle of incidence is equal to the angle of emergence and each one is equal to 3/4th the angle of prism. The angle of deviation is
1) 45°
2) 39°
3) 20°
4) 30°

95. The distance between field lens and eye lens in Ramsden eyepiece is 4 cm. Then the distance of the cross - wires from the eye lens is

1) 1.5 cm 2) 1.0 cm 3) 5.0 cm 4) 5.5 cm

96.	Two coherent sources wh	hose intensity ratio is 64 : 1	produce interference fringe	es. The ratio of intensities of
	maxima and minima is			
	9:7	2) 8 : 1	3) 81 : 49	4) 81 : 7
97.	The frequency of vibration	on in a vibration magnetome	ter of the combination of t	wo bar magnets of magnetic
	moments M_1 and M_2 is 6	5 Hz when like poles are tied	l and it is 2 Hz when the u	nlike poles are tied together,
	then the ratio $M_1 : M_2$ is			
	1) 4 : 5	2) 5 : 4	3) 1 : 3	4) 3 : 1
98.	A short magnetic needl	e is pivoted in a uniform r	nagnetic field of inductio	n 1T. Now, simultaneously
	another magnetic field of	of induction $\sqrt{3}T$ is applied	d at right angles to the fir	st field; the needle deflects
	through an angle ' θ ' wh	nose value is		
	1) 30°	2) 45 [°]	3) 90 ⁰	4) 60°
99.	The potential difference	between two parallel plates	is 10 ⁴ volts. If the plates	are separated by 0.5 cm the
	force on an electron betw	ween the plates is		
	1) 32 x 10 ⁻¹³ N	2) 0.32 x 10 ¹³ N	3) 0.032 x 10^{-13} N	4) 3.2 x 10 ⁻¹³ N
100.	Two capacitors of capacit	ities $1 \ \mu F$ and $C \ \mu F$ are c	onnected in series and the	combination is charged to a
	potential difference of 12	20V. If the charge on the con	mbination is $80\mu C$, the end	nergy stored in the capacitor
	of capacity C in micro J	oules is		
	1) 1800	2) 1600	3) 14400	4) 7200
101.	6Ω and 12Ω resistors a	are connected in parallel. Thi	s combination is connected	in series with a 10V battery
	and 6Ω resistor. What is	s the potential difference bet	ween the terminals of the	12Ω resistor ?
	1) 4 V	2) 16 V	3) 2 V	4) 8 V
102.				iven by $q = 3t^2 + 5t + 2$ in
		seconds. What is the value of		
		2) 1.77 x 10^{-5} m/ sec		
103.				200°C. If the cold function is
		version temperature is (ε in		
	1) 103 K	2) 143 K	3) 333 K	4) 443 K
104.		-	e center of a single turn of	circular coil of radius 5 cm
	carrying current of 0.9 A			
105		2) $9\pi \times 10^{-7}$ T		
105.				ged to a certain potential and
	_	hrough t resistor. The time i	n which the potential will	take to fall to half its origin
	value is (Given $\log_{10} 2 =$			
	1) 2 sec	2) 0.693 sec	3) 0.5 sec	4) 1.0 sec
106.				ined in series, then the time
		sec. The inductance and the		
	1) 54 mH 180	2) 14 mH 42.0	3) 42 mH 14 O	4) 14 mH 60 O

1) 54 mH, 18_{Ω} 2) 14 mH, 42_{Ω} 3) 42 mH, 14_{Ω} 4) 14 mH, 60 $_{\Omega}$

107.	In Thomson's experiment	to determine $\frac{e}{m}$ of an elect	tron, it is found that an el	ectron beam having a kinetic						
	energy of 4505 eV remains undeflected, when subjected to crossed electric and magnetic fields. If $E = 10^3$									
	Vm ⁻¹ , the value of 'B' is	(mass of the electron is 9.1	x 10 ⁻³¹ kg)							
	1) $2.5 \times 10^{-3} \mathrm{Wb} \mathrm{m}^{-2}$	2) $5.0 \times 10^{-4} \mathrm{Wb} \mathrm{m}^{-2}$	3) $2.5 \times 10^{-4} \mathrm{Wb} \mathrm{m}^{-2}$	4) $1.0 \times 10^{-4} \mathrm{Wb} \mathrm{m}^{-2}$						
108.				and v_2 of the incident light						
				d in the two cases are in the						
	1 2	nold frequency of the metalli								
		2) $(nv_1 - v_2)/(n-1)$		4) $(v_1 - v_2)/n$						
109				ential difference. The veloci-						
107.	ties of them are in the ra	-	lectronated by the star point							
	1) $1:\sqrt{2}:1$	_	3) 1:2:4	4) $4 \cdot 2 \cdot 1$						
110				then the change in collector						
110.	current is	equal to bo has a change in	buse current of 250 pm	then the change in concetor						
	1) 20,000 mA	2) 200 mA	3) 2000 mA	4) 20 mA						
111		$f = at + bt^2$ with t as time. The	,							
	1) MLT ⁻⁴ ,MLT ⁻²									
112.		of equal magnitude and θ i								
	with their resultant is	1 2 0	C							
		2) $\theta/2$	3) <i>2</i> A	4) 0						
113.	1) <i>θ</i> /4		3) 2θ radius R in 40 sec. What w	4) 0 vill be his displacement at the						
113.	1) $\theta/4$ An athlete completes one	round of a circular track of r		,						
	 θ/4 An athlete completes one end of 2 min 20 seconds 7R 	round of a circular track of r ? 2) 2R	radius R in 40 sec. What w 3) 2π R	vill be his displacement at the						
	 θ/4 An athlete completes one end of 2 min 20 seconds 7R A ball is falling freely f 	round of a circular track of r ? 2) 2R rom a height. When it reach	radius R in 40 sec. What w 3) 2π R hes 10m height from the	will be his displacement at the 4) 7π R						
	 θ/4 An athlete completes one end of 2 min 20 seconds 7R A ball is falling freely f 	round of a circular track of r ? 2) 2R rom a height. When it reach	radius R in 40 sec. What w 3) 2π R hes 10m height from the	4) 7π R ground its velocity is V ₀ . It						
	 θ/4 An athlete completes one end of 2 min 20 seconds 7R A ball is falling freely f collides with the ground 	round of a circular track of r ? 2) 2R rom a height. When it reach	radius R in 40 sec. What w 3) 2π R hes 10m height from the	4) 7π R ground its velocity is V ₀ . It						
114.	 θ/4 An athlete completes one end of 2 min 20 seconds 7R A ball is falling freely f collides with the ground is 7 m/s 	round of a circular track of r ? 2) 2R from a height. When it reach and loses 50% of its energy 2) 10 m/s	radius R in 40 sec. What w 3) 2π R hes 10m height from the and rises back to height o 3) 14 m/s	vill be his displacement at the 4) 7π R ground its velocity is V ₀ . It f 10 m. Then the velocity V ₀ 4) 16 m/s						
114.	 θ/4 An athlete completes one end of 2 min 20 seconds 7R A ball is falling freely f collides with the ground is 7 m/s A bomb moving with vertices 	round of a circular track of r 2) 2R rom a height. When it reach and loses 50% of its energy 2) 10 m/s locity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s	radius R in 40 sec. What w 3) 2π R hes 10m height from the and rises back to height o 3) 14 m/s sec explode into two piec	vill be his displacement at the 4) $7\pi R$ ground its velocity is V_0 . It f 10 m. Then the velocity V_0 4) 16 m/s es of mass ratio 1 : 4. After						
114.	 θ/4 An athlete completes one end of 2 min 20 seconds 7R A ball is falling freely f collides with the ground is 7 m/s A bomb moving with vertices 	round of a circular track of r 2) 2R rom a height. When it reach and loses 50% of its energy 2) 10 m/s locity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s	radius R in 40 sec. What w 3) 2π R hes 10m height from the and rises back to height o 3) 14 m/s sec explode into two piec	vill be his displacement at the 4) 7π R ground its velocity is V ₀ . It f 10 m. Then the velocity V ₀ 4) 16 m/s						
114.	 θ/4 An athlete completes one end of 2 min 20 seconds 7R A ball is falling freely f collides with the ground is 7 m/s A bomb moving with version is 	round of a circular track of r 2) 2R rom a height. When it reach and loses 50% of its energy 2) 10 m/s locity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc	radius R in 40 sec. What w 3) 2π R hes 10m height from the and rises back to height o 3) 14 m/s sec explode into two piec ity $(200\hat{i}+70\hat{j}+15\hat{k})$ n	 4) 7π R ground its velocity is V₀. It f 10 m. Then the velocity V₀ 4) 16 m/s es of mass ratio 1 : 4. After n/sec. The velocity of larger 						
114.	 θ/4 An athlete completes one end of 2 min 20 seconds 7R A ball is falling freely f collides with the ground is 7 m/s A bomb moving with version is 	round of a circular track of r 2) 2R rom a height. When it reach and loses 50% of its energy 2) 10 m/s locity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s	radius R in 40 sec. What w 3) 2π R hes 10m height from the and rises back to height o 3) 14 m/s sec explode into two piec ity $(200\hat{i}+70\hat{j}+15\hat{k})$ n	 4) 7π R ground its velocity is V₀. It f 10 m. Then the velocity V₀ 4) 16 m/s es of mass ratio 1 : 4. After n/sec. The velocity of larger 						
114.115.	1) $\theta/4$ An athlete completes one end of 2 min 20 seconds 1) 7R A ball is falling freely f collides with the ground is 1) 7 m/s A bomb moving with ve explosion the smaller pi piece after explosion is 1) $45\hat{j}-35\hat{k}$	round of a circular track of r 2) 2R rom a height. When it reach and loses 50% of its energy 2) 10 m/s locity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc 2) $45\hat{i} - 35\hat{j}$	radius R in 40 sec. What w 3) 2π R hes 10m height from the and rises back to height o 3) 14 m/s sec explode into two piec ity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ n 3) $45\hat{k} - 35\hat{j}$	 4) 7π R ground its velocity is V₀. It f 10 m. Then the velocity V₀ 4) 16 m/s es of mass ratio 1 : 4. After n/sec. The velocity of larger 						
114.115.	1) $\theta/4$ An athlete completes one end of 2 min 20 seconds 1) 7R A ball is falling freely f collides with the ground is 1) 7 m/s A bomb moving with ve explosion the smaller pi piece after explosion is 1) $45\hat{j}-35\hat{k}$	round of a circular track of r 2) 2R rom a height. When it reach and loses 50% of its energy 2) 10 m/s locity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc 2) $45\hat{i} - 35\hat{j}$ kg moves at $5\hat{i}$ m/s and and	radius R in 40 sec. What w 3) 2π R hes 10m height from the and rises back to height o 3) 14 m/s sec explode into two piec ity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ n 3) $45\hat{k} - 35\hat{j}$	will be his displacement at the 4) $7\pi R$ ground its velocity is V_0 . It f 10 m. Then the velocity V_0 4) 16 m/s es of mass ratio 1 : 4. After h/sec. The velocity of larger 4) $-35\hat{i} + 45\hat{k}$						
114.115.	1) $\theta/4$ An athlete completes one end of 2 min 20 seconds 1) 7R A ball is falling freely f collides with the ground is 1) 7 m/s A bomb moving with ve explosion the smaller pi piece after explosion is 1) $45\hat{j}-35\hat{k}$ A body of mass $m_1 = 4$ kinetic energy of centre of	round of a circular track of r 2) 2R rom a height. When it reach and loses 50% of its energy 2) 10 m/s locity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc 2) $45\hat{i} - 35\hat{j}$ kg moves at $5\hat{i}$ m/s and and of mass is	radius R in 40 sec. What w 3) 2π R hes 10m height from the and rises back to height o 3) 14 m/s sec explode into two piec ity $(200\hat{i}+70\hat{j}+15\hat{k})$ n 3) $45\hat{k}-35\hat{j}$ other body of mass m ₂ = 1	vill be his displacement at the 4) $7\pi R$ ground its velocity is V ₀ . It f 10 m. Then the velocity V ₀ 4) 16 m/s es of mass ratio 1 : 4. After n/sec. The velocity of larger 4) $-35\hat{i} + 45\hat{k}$ 2 kg moves at $10\hat{i}$ m/s. The						
114.115.	1) $\theta/4$ An athlete completes one end of 2 min 20 seconds 1) 7R A ball is falling freely f collides with the ground is 1) 7 m/s A bomb moving with ve explosion the smaller pi piece after explosion is 1) $45\hat{j}-35\hat{k}$ A body of mass $m_1 = 4$	round of a circular track of r 2) 2R rom a height. When it reach and loses 50% of its energy 2) 10 m/s locity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc 2) $45\hat{i} - 35\hat{j}$ kg moves at $5\hat{i}$ m/s and and	radius R in 40 sec. What w 3) 2π R hes 10m height from the and rises back to height o 3) 14 m/s sec explode into two piec ity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ n 3) $45\hat{k} - 35\hat{j}$	will be his displacement at the 4) $7\pi R$ ground its velocity is V_0 . It f 10 m. Then the velocity V_0 4) 16 m/s es of mass ratio 1 : 4. After h/sec. The velocity of larger 4) $-35\hat{i} + 45\hat{k}$						
114.115.116.	1) $\theta/4$ An athlete completes one end of 2 min 20 seconds 1) 7R A ball is falling freely f collides with the ground is 1) 7 m/s A bomb moving with ve explosion the smaller pi piece after explosion is 1) $45\hat{j}-35\hat{k}$ A body of mass $m_1 = 4$ kinetic energy of centre of 1) $\frac{200}{3}J$	round of a circular track of r 2) 2R rom a height. When it reach and loses 50% of its energy 2) 10 m/s locity $(40\hat{i} + 50\hat{j} - 25\hat{k})$ m/s ece moves away with veloc 2) $45\hat{i} - 35\hat{j}$ kg moves at $5\hat{i}$ m/s and and of mass is 2) $\frac{500}{3}$ J	radius R in 40 sec. What w 3) 2π R hes 10m height from the and rises back to height o 3) 14 m/s sec explode into two piec ity $(200\hat{i} + 70\hat{j} + 15\hat{k})$ m 3) $45\hat{k} - 35\hat{j}$ other body of mass m ₂ = 1 3) $\frac{400}{3}$ J	vill be his displacement at the 4) $7\pi R$ ground its velocity is V ₀ . It f 10 m. Then the velocity V ₀ 4) 16 m/s es of mass ratio 1 : 4. After n/sec. The velocity of larger 4) $-35\hat{i} + 45\hat{k}$ 2 kg moves at $10\hat{i}$ m/s. The						

1)
$$\frac{(1-e^2)h}{e^2}$$
 2) $\frac{(1+e^2)h}{e^2}$ 3) $\left(\frac{1+e^2}{1-e^2}\right)h$ 4) $\frac{e^2h}{1-e^2}$

118. An object takes n times as much time as to slide down a 45° rough inclined plane as it takes to slide down a perfectly smooth inclined plane of the same inclination. The coefficient of kinetic friction between the object and the rough incline is given by

1)
$$\left(1-\frac{1}{n^2}\right)$$
 2) $\left(\frac{1}{1-n^2}\right)$ 3) $\sqrt{1-\frac{1}{n^2}}$ 4) $\sqrt{1+\frac{1}{n^2}}$

119. The moment of Inertia of a disc, of mass M and radius R, about an axis which is a tangent and parallel to its diameter is

1)
$$\frac{1}{2}$$
MR² 2) $\frac{3}{4}$ MR² 3) $\frac{1}{4}$ MR² 4) $\frac{5}{4}$ MR²

- 120. A fly-wheel of mass 25 kg has a radius of 0.2m. It is making 240 rpm. What is the torque necessary to bring to rest in 20 sec ?
 - 1) 2π Nm 2) 0.2π Nm 3) $\frac{2}{\pi}$ Nm 4) 4π Nm

81) 2	82) 4	83) 3	84) 2	85) 2	86) 2	87) 2	88) 4	89) 2	90) 2
91) 4	92) 4	93) 3	94) 4	95) 4	96) 3	97) 2	98) 4	99) 4	100) 2
101) 1	102) 2	103) 4	104) 1	105) 2	106) 1	107) 3	108) 2	109) 1	110) 4
111) 2	112) 2	113) 2	114) 3	115) 1	116) 3	117) 3	118) 1	119) 4	120) 2

EAMCET-2010 ENGINEERING-CHEMISTRY

121.	A solution of concentration solution is "	ion 'C' g equiv/litre has a sp	ecific resistance R. The eq	uivalent conductance of the
	1) R/C	2) C/R	3) $\frac{1000}{RC}$	4) $\frac{1000R}{C}$
122.	Assertion (A) : White tir	is an example of tetragonal	system	
	Reason (R) : For a tetrag	conal system $a = b$ and c and	$\alpha = \beta \alpha = \beta = \gamma \neq 90^{\circ}.$	
	The correct answer is :			
	1) Both A and R are true	and R explains A		
	2) Both A and R are true	and R does not explains A		
	3) A is true, R is false	×	4) A is false, R is true	
			1	
123.	What is the slope of the	straight line for the graph dr	awn between ln k and $\frac{T}{T}$,	where k is the rate constant
	of a reaction at temperat	ture T?		
	_		F	R
	1) $\frac{-E_a}{2.303R}$	2) $\frac{-E_a}{R}$	3) $\frac{E_a}{R}$	4) $\frac{R}{E_a}$
124	If the equilibrium consta	nt for the reaction	i c	a
121.				
	$H_{2(g)} + I_{2(g)} \rightleftharpoons 2H$			
	what is the equailibrium			
	$H_{2(g)} + I_{2(g)} \Longrightarrow 2HI_{(g)}$?		
	1) $\frac{1}{K}$	2) $\sqrt{\mathbf{K}}$	3) K	4) $\frac{1}{\sqrt{K}}$
125.	The pH of 0.01 M soluti	on of acetic acid is 5.0. What	at are the values of [H ⁺] and	nd K _a respectively?
		2) 1 x 10 ⁻⁵ M, 1 x 10 ⁻⁹		
126.	A system is provided with	ith 50 Joules of heat and th	e work done on the system	m is 10 Joules. What is the
	change in internal energy	y of the system in Joules?		
	1) 60	2) 40	3) 50	4) 10
127.	A micelle formed during	the cleansing action by soa	p is	
	1) A discrete particle of	soap	2) Aggregated particles	of soap and dirt
	3) A discrete particle of	dust	4) An aggregated particl	e of dust and water
128.	The orange coloured con	pound of formed when H_2O	P_2 is added to TiO ₂ solution	a acidified with conc. H_2SO_4
	is			
	1) Ti ₂ O ₃	2) $H_2 Ti_2 O_8$	3) $H_2 TiO_3$	4) $H_2 TiO_4$
129.	Solvay process is used in	n the manufacture of		
	1) K_2CO_3	2) KHCO ₃	3) Na_2CO_3	4) CaCl ₂
130.	Diborane react with amr	nonia under different condit	ions to give a variety of p	products. Which one among
	the following is not form	ned in these reactions		
	1) B ₂ H ₆ . 2 NH ₃	2) B ₁₂ H ₁₂	3) B ₃ N ₃ H ₆	4) (BN) _n Page No.1

	c et-2010 Engineering (Che Which one of the followi	• /		Date :				
151.	1) galena	2) cerussite	3) cassiterite	4) anglesite				
132.		rmed by thermal decomposi						
	1) NO	2) N ₂ O	3) N_2O_5	4) NO ₂				
133.	Which one of the follow:	ing is most acidic?	2 5	2				
	1) H ₂ O	2) H ₂ S	3) H_2 Te	4) H_2 Se				
134.	Which one of the follow	ving is formed apart from so	dium chloride when chlor	ine reacts with hot concen-				
	trated sodium hydroxide	?						
	1) NaOCl	2) NaClO ₃	3) NaCIO ₂	4) NaCIO ₄				
135.	Helium mixed with oxyg	en is used in the treatment of	of					
	1) Beri beri	2) Burning feet	3) Joints burning	4) Asthma				
136.	Which of the following i	s a correct statement ?						
	1) Aqueous solutions of (Cu^+ and Zn^{2+} are colourless	2) Aqueous solutions of	Cu^{2+} and Zn^{2+} are colour less				
	3) Aqueous solutions of	Fe ³⁺ is green in colour	4) Aqueous solutions of	f MNO_4^- is colourless				
137.	The chemical reaction th	at involves roasting process	is					
	1) $\text{Fe}_2\text{O}_3 \rightarrow 3\text{CO} \rightarrow 2\text{Fe}_2\text{O}_3$	$e + 3CO_2$	2) $2\text{Al} + \text{Fe}_2\text{O}_3 \rightarrow 2\text{Fe}$	$+ Al_2O_3$				
	3) $2ZnS + 3O_2 \rightarrow 2Zno$	$+3SO_2$	4) $\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3$					
138.	The acceptable level of a	carbon monoxide gas (CO) i	in the atmosphere in ppm level in					
	1) 9	2) 250	3) 49	4) 850				
139.	The conversion of O-acy	lated phenol in presence of A	$AlCl_3$ to C - acylated pheno	l is an example for this type				
	of organic reaction							
	1) Addition reaction		2) Substitution reaction					
	3) Molecular rearrangem	ient	4) Elimination reaction					
140.	Diels - Alder reaction wi	ll not take place with which	of the following reactants	?				
	1) and		2) and					
		/	and					

141. In which of the following ortho/para substitution by an electrophile is very facile ?

1) Nitrobenzene2) Phenol3) Benzoic acid

3) and

4) Acetophenone

142. Which one of the following pairs of 2, 3-butane diol is enantiomeric ?
1) 2R, 3R and 2S, 3S
3) 2S, 3S and 2S, 3R
3) 2R, 3R and 2R, 3S
4) 2S, 3S and 2R, 3S

143. The two eneantiomers of secondary butyl chloride differ from each other in which one of the following properties ?

4)

1) Boiling point2) Specific rotation3) Density4) C -CI bond length

Eamcet-2010 Engineering (Chemistry)

	cet-2010 Engineering (Che Identify the product (A)			Date :
	$C_{2}H_{5} - O - C_{2}H_{5} + CO$	-		
	1) Ethyl alcohol	2) Ethyl propionate	3) Ethanoic acid	4) Ethyl acetate
145.	•	ing gives yellow precipitate		•
	1) CH ₃ - CHO		3) HCHO	4) CH ₃ OH
146.	Identify A, B and C in the			3
	$CH_3 \xrightarrow{KCN} A \xrightarrow{Hydrolysi}_{H_3O^\oplus}$	$\xrightarrow{s} B \xrightarrow{C_2H_5OH/H^+} C$		
	А	B C		
	1) $CH_{3}NC$	CH_3NHCH_3 $CH_3 - N - CH_3 - $	C_2H_5	
		CH3		
	2) CH ₂ CN	СН СОЛН СН СО І	н	
	$\begin{array}{c} 2) & CH_3CN \\ 3) & CH_3CN \end{array}$	CH ₃ CONH ₂ CH ₃ CO ₂ I CH ₃ CO ₂ CH ₃ CO ₂ H CH ₃ CO ₂ CO ₂ H CH ₃ CO ₂ CO ₂ CH CH ₃ CO ₂	C_2H_5	
		CH ₃ CO ₂ H (CH ₃ CO		
147.	Reduction of nitrobenzer	ne with Zn and alcoholic KG	OH solution results in the	formation of the following
	compound			
	1) Hydrazobenzene	2) Azobenzene	3) Aniline	4) Phenyl hydroxyl amine
148.	If the number average me	olecular weight and weight a	nd weight average molecu	lar weight of a polymer are
	40,000 and 60, 000 resp	ectively, the polydispersity in	ndex of the polymer will	be
	1) >1	2) <1	3) 1	4) Zero
149.	The AT/GC ratio in huma	an beings is		
	(where $A =$ adenine, $T =$	thymine, G = Guanine, C =	Cytosine)	
	1) 1	2) 1.52	3) 9.3	4) 2
150.	Identify the non-narcotic	analgesic from the followin	ng	
	1) Diazepam	2) Ibuprofen	3) Formalin	4) Terpineol
151.	Which one of the follow wavelength ?	wing transitions of an elect	ron in hydrogen atom en	nits radiation of the lowest
	1) $n_2 = \infty to n_1 = 2$	2) $n_2 = 4 to n_1 = 3$	3) $n_2 = 2 \tan n_1 = 1$	4) $n_2 = 5 to n_1 = 3$
152.	Which one of the follow	ing conditions incorrect for a	a well behaved wave func	tion (ϕ) ?
	1) ϕ must be finite	2) ϕ must be single valued	d 3) φ must be infinite	4) ϕ must be continuous
153.	The electron affinity valu	es of elements A, B, C and I	D are respectively -135, -0	60, -200 and -348 kJ mol ⁻¹ .
	The outer electronic cont	figuration of element B is		
	1) $3s^2 3p^5$	2) $3s^2 3p^4$	3) $3s^2 3p^3$	4) $3s^2 3p^{2 }$
154.	Match the following			
	List I (Molecule	List II (Number of lone pa	irs on central atom)	
	A) NH ₃	I) Two		
	B) H ₂ o	II) Three		
	C) XeF ₂	III) Zero		
	D) CH ₄	IV) Four		

V) One

ABCDABCD1)VIIIIII2)IIIIIIV2)VIIIIII4)IVIIIIV155.The ratio of anior radius to cation radius of a crystal is 10 : 9.3. Then, the coordination number of the cation in the crystal is1) 22) 43) 64) 8156.The number of molecules of CO ₂ liberated by the combustion of 0.1 gram atom of graphite in air is1)3.01 x 10 ²³ 2) 6.02 x 10 ²³ 3) 6.02 x 10 ²² 4) 3.01 x 10 ²³ 157.CH ₄ diffuses two times faster than a gas X. The number of bacues present in 32 g of gas X is (N is Avogadro number)1)N2) $\frac{N}{2}$ 3) $\frac{N}{4}$ 4) $\frac{N}{16}$ 158.If BaCl ₂ ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is 1) 2.62) 0.43) 0.84) 2.4159.X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in Y P_1 3) $P_3 < P_1 < P_2$ 4) $P_2 < P_1 < P_3$ 10.P ₁ P_2 P_3 $P_1 < P_2 < P_1 < P_2$ 4) $P_2 < P_1 < P_3$ 1010.P ₁ $P_3 < P_2 < P_1 < P_3$ 3) $P_3 < P_1 < P_2 < P_1 < P_3$ 4) $P_2 < P_1 < P_3$ 10.P ₁ $P_2 < P_1 < P_3$ 3) $P_3 < P_1 < P_2 < P_1 < P_3$ 4) $P_2 < P_1 < P_3$ 10.P ₁ $P_3 < P_2 < P_1 < P_3$ 3) $P_3 < P_1 < P_2 < P_1 < P_3$ 4) $P_2 < P_1 < P_3$ 10.P ₁ $P_3 < P_2 < P_1 < P_3$ 3)	Eamo	et-2010	Engine	eering (C	Chemist	ry)						Date :		
2) V I II II II V II IV 155. The ratio of anion radius to cation radius of a crystal is 10 : 9.3. Then, the coordination number of the cation in the crystal is 1) 2 2) 4 3) 6 4) 8 156. The number of molecules of CO ₂ liberated by the complete combustion of 0.1 gram atom of graphite in air is 1) 3.01 x 10 ²² 2) 6.02 x 10 ²³ 3) 6.02 x 10 ²² 4) 3.01 x 10 ²³ 157. CH ₄ diffuses two times faster than a gas X. The number of molecules present in 32 g of gas X is (N is Avogadro number) 1) N 2) $\frac{N}{2}$ 3) $\frac{M}{4}$ 4) $\frac{N}{16}$ 158. If BaCl ₂ ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is 1) 2.6 2) 0.4 3) 0.8 4) 2.4 159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in Y X/mol lit ⁻¹ Y/mm of Hg 0.10 P ₁ 0.25 P ₂ 0.1 P ₃ The correct of vapour pressure is 1) P ₁ < P ₂ < P ₃ 2) P ₃ < P ₂ < P ₁ 3) P ₃ < P ₁ < P ₂ 4) P ₂ < P ₁ < P ₃ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chlo			А	В	С	D		А	В	С	D			
155. The ratio of anion radius to cation radius of a crystal is $10: 9.3$. Then, the coordination number of the cation in the crystal is 1) 2 2) 4 3) 6 4) 8156. The number of molecules of CO2 liberated by the complete combustion of 0.1 gram atom of graphite in air is 1) 3.01×10^{22} 2) 6.02×10^{23} 3) 6.02×10^{22} 4) 3.01×10^{23} 157. CH4 diffuses two times faster than a gas X. The number of molecules present in 32 g of gas X is (N is Avogadro number)1) N2) $\frac{N}{2}$ 3) $\frac{N}{4}$ 158. If BaCl2 ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is 1) 2.6 2) 0.4 3) 0.8 159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in YX/mol lit 1 0.10 0.25 0.1 P_3 The correct of vapour pressure is $1) P_1 < P_2 < P_3$ 2) $P_3 < P_2 < P_1$ $3) P_3 < P_1 < P_2$ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm 1 cm2 equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm 1 cm2 equiv ⁻¹ at the same conditions is		1)	V	Ι	III	Ι	2)	III	Ι	II	V			
in the crystal is 1) 2 2) 4 3) 6 4) 8 156. The number of molecules of CO ₂ liberated by the complete combustion of 0.1 gram atom of graphite in air is 1) 3.01 x 10 ²² 2) 6.02 x 10 ²³ 3) 6.02 x 10 ²² 4) 3.01 x 10 ²³ 157. CH ₄ diffuses two times faster than a gas X. The number of molecules present in 32 g of gas X is (N is Avogadro number) 1) N 2) $\frac{N}{2}$ 3) $\frac{N}{4}$ 4) $\frac{N}{16}$ 158. If BaCl ₂ ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is 1) 2.6 2) 0.4 3) 0.8 4) 2.4 159. X is a non-volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in Y X/mol lit ⁻¹ Y/mm of Hg 0.10 P ₁ 0.25 P ₂ 0.01 P ₃ The correct of vapour pressure is 1) P ₁ < P ₂ < P ₃ 2) P ₃ < P ₂ < P ₁ 3) P ₃ < P ₁ < P ₂ 4) P ₂ < P ₁ < P ₃ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm ⁻¹ cm ² equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is		2)	V	Ι	II	III	4)	Ι	V	III	IV			
1) 22) 43) 64) 8156. The number of molecules of CO2 liberated by the complete combustion of 0.1 gram atom of graphite in air is1) 3.01 x 10222) 6.02 x 10233) 6.02 x 10224) 3.01 x 1023157. CH4 diffuses two times faster than a gas X. The number of molecules present in 32 g of gas X is (N is Avogadro number)1) N2) $\frac{N}{2}$ 3) $\frac{N}{4}$ 4) $\frac{N}{16}$ 158. If BaCl2 ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is1) 2.62) 0.43) 0.84) 2.4159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in YX/mol lit ⁻¹ Y/mm of Hg0.10P10.25P20.01P3The correct of vapour pressure is1) P1 < P2 < P3	155.	The rat	io of ar	nion radi	us to ca	tion radi	ius of a	crystal i	s 10 : 9.	3. Then	, the coor	dination number of the cation		
 156. The number of molecules of CO₂ liberated by the complete combustion of 0.1 gram atom of graphite in air is 3.01 x 10²² 6.02 x 10²³ 6.02 x 10²² 1.01 x 10²³ 157. CH₄ diffuses two times faster than a gas X. The number of molecules present in 32 g of gas X is (N is Avogadro number) N 2) N/2 3) N/4 4) N/16 158. If BaCl₂ ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is 2.6 0.4 0.8 2.4 159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in Y X/mol lit⁻¹ Y/mm of Hg 0.25 P₂ 0.01 P₃ The correct of vapour pressure is P₃ P₁ < P₂ < P₃ P₃ < P₂ < P₁ < P₂ P₃ 10 P₁ < P₂ < P₃ P₃ < P₂ < P₁ < P₂ P₂ < P₁ < P₂ P₂ < P₁ < P₃ 10 P₁ P₂ < P₃ P₃ P₃ < P₁ < P₂ < P₁ < P₃ P₃ P₄ P₂ < P₁ < P₃		in the crystal is												
is 1) 3.01×10^{22} 2) 6.02×10^{23} 3) 6.02×10^{22} 4) 3.01×10^{23} 157. CH ₄ diffuses two times faster than a gas X. The number of molecules present in 32 g of gas X is (N is Avogadro number) 1) N 2) $\frac{N}{2}$ 3) $\frac{N}{4}$ 4) $\frac{N}{16}$ 158. If BaCl ₂ ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is 1) 2.6 2) 0.4 3) 0.8 4) 2.4 159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in Y X/mol lit ⁻¹ Y/mm of Hg 0.10 P ₁ 0.25 P ₂ 0.01 P ₃ The correct of vapour pressure is 1) P ₁ < P ₂ < P ₃ 2) P ₃ < P ₂ < P ₁ 3) P ₃ < P ₁ < P ₂ 4) P ₂ < P ₁ < P ₃ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm ⁻¹ cm ² equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is		1) 2			2)	4			3) 6			4) 8		
1) 3.01×10^{22} 2) 6.02×10^{23} 3) 6.02×10^{22} 4) 3.01×10^{23} 157. CH_4 diffuses two times faster than a gas X. The number of molecules present in 32 g of gas X is (N is Avogadro number)1) N2) $\frac{N}{2}$ 3) $\frac{N}{4}$ 4) $\frac{N}{16}$ 158.If BaCl ₂ ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is1) 2.62) 0.43) 0.84) 2.4159.X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in YX/mol lit ⁻¹ Y/mm of Hg0.25P20.01P3The correct of vapour pressure is1) P ₁ < P ₂ < P ₃ 10P3160.At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm ⁻¹ cm ² equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is	156.	5. The number of molecules of CO_2 liberated by the complete combustion of 0.1 gram atom of graphite in air												
 157. CH₄ diffuses two times faster than a gas X. The number of molecules present in 32 g of gas X is (N is Avogadro number) 1) N 2) N/2 3) N/4 4) N/16 158. If BaCl₂ ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is 2.6 2) 0.4 3) 0.8 4) 2.4 159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in Y X/mol lit⁻¹ Y/mm of Hg 0.10 P₁ 0.25 P₂ 0.01 P₃ The correct of vapour pressure is P₁ < P₂ < P₃ P₃ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm⁻¹ cm² equiv⁻¹ respectively. The equivalent conductance of benzoic acid in ohm⁻¹ cm² equiv⁻¹ at the same conditions is 		-												
Avogadro number) 1) N 2) $\frac{N}{2}$ 3) $\frac{N}{4}$ 4) $\frac{N}{16}$ 158. If BaCl ₂ ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is 1) 2.6 2) 0.4 3) 0.8 4) 2.4 159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in Y X/mol lit ⁻¹ Y/mm of Hg 0.10 P ₁ 0.25 P ₂ 0.01 P ₃ The correct of vapour pressure is 1) P ₁ < P ₂ < P ₃ 2) P ₃ < P ₂ < P ₁ 3) P ₃ < P ₁ < P ₂ 4) P ₂ < P ₁ < P ₃ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm ⁻¹ cm ² equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is		1) 3.01	x 10 ²²		2)	6.02 x	1023		3) 6.0	2×10^{2}	2	4) 3.01 x 10^{23}		
1) N2) $\frac{N}{2}$ 3) $\frac{N}{4}$ 4) $\frac{N}{16}$ 158. If BaCl2 ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is 1) 2.62) 0.43) 0.84) 2.4159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in YYmm of Hg0.10P10.25P20.01P3The correct of vapour pressure is 1) $P_1 < P_2 < P_3$ 1) $P_1 < P_2 < P_3$ 2) $P_3 < P_2 < P_1$ 3) $P_3 < P_1 < P_2$ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm ⁻¹ cm ² equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is	157.	CH ₄ di	ffuses 1	two time	es faster	r than a	gas X.	The nu	mber of	molect	iles prese	nt in 32 g of gas X is (N is		
 158. If BaCl₂ ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is 2.6 2.0.4 3.0.8 4.) 2.4 159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in Y X/mol lit⁻¹ Y/mm of Hg 0.10 P₁ 0.25 P₂ 0.01 P₃ The correct of vapour pressure is P₁ < P₂ < P₃ P₃ < P₂ < P₁ P₃ < P₂ < P₁ < P₂ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm⁻¹ cm² equiv⁻¹ respectively. The equivalent conductance of benzoic acid in ohm⁻¹ cm² equiv⁻¹ at the same conditions is 		•												
 158. If BaCl₂ ionizes to an extent of 80% in aqueous solution, the value of Van't Hoff factor is 2.6 2.0.4 3.0.8 4.) 2.4 159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in Y X/mol lit⁻¹ Y/mm of Hg 0.10 P₁ 0.25 P₂ 0.01 P₃ The correct of vapour pressure is P₁ < P₂ < P₃ P₃ < P₂ < P₁ P₃ < P₂ < P₁ < P₂ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm⁻¹ cm² equiv⁻¹ respectively. The equivalent conductance of benzoic acid in ohm⁻¹ cm² equiv⁻¹ at the same conditions is 		1) N			2)	N			$2 \frac{N}{N}$			$(1) \frac{N}{N}$		
1) 2.62) 0.43) 0.84) 2.4159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in YX/mol lit ⁻¹ Y/mm of Hg0.10P10.25P20.01P3The correct of vapour pressure is 1) $P_1 < P_2 < P_3$ 2) $P_3 < P_2 < P_1$ 10.At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm ⁻¹ cm ² equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is		1) N			2)	2			³⁾ 4			4) 16		
 159. X is a non- volatile solute and Y is a volatile solvent. The following vapour pressures are observed by dissolving X in Y X/mol lit⁻¹ Y/mm of Hg 0.10 P₁ 0.25 P₂ 0.01 P₃ The correct of vapour pressure is 1) P₁ < P₂ < P₃ 2) P₃ < P₂ < P₁ 3) P₃ < P₁ < P₂ 4) P₂ < P₁ < P₃ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm⁻¹ cm² equiv⁻¹ respectively. The equivalent conductance of benzoic acid in ohm⁻¹ cm² equiv⁻¹ at the same conditions is 	158.	If BaCl	₂ ionize	es to an	extent of	of 80%	in aqueo	ous solut	tion, the	value c	of Van't H	off factor is		
dissolving X in Y X/mol lit ⁻¹ Y/mm of Hg 0.10 P_1 0.25 P_2 0.01 P_3 The correct of vapour pressure is 1) $P_1 < P_2 < P_3$ 2) $P_3 < P_2 < P_1$ 3) $P_3 < P_1 < P_2$ 4) $P_2 < P_1 < P_3$ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm ⁻¹ cm ² equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is		1) 2.6			2)	0.4			3) 0.8			4) 2.4		
X/mol lit ⁻¹ Y/mm of Hg 0.10 P_1 0.25 P_2 0.01 P_3 The correct of vapour pressure is $1) P_1 < P_2 < P_3$ $2) P_3 < P_2 < P_1$ $3) P_3 < P_1 < P_2$ $4) P_2 < P_1 < P_3$ 160.At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm ⁻¹ cm ² equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is	159.	X is a	non- v	olatile s	olute a	nd Y is	a volati	ile solve	ent. The	follow	ing vapou	ir pressures are observed by		
0.10 P_1 0.25 P_2 0.01 P_3 The correct of vapour pressure is1) $P_1 < P_2 < P_3$ 2) $P_3 < P_2 < P_1$ 3) $P_3 < P_1 < P_2$ 4) $P_2 < P_1 < P_3$ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm ⁻¹ cm ² equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is		dissolvi	ing X i	n Y										
 0.25 P₂ 0.01 P₃ The correct of vapour pressure is 1) P₁ < P₂ < P₃ 2) P₃ < P₂ < P₁ 3) P₃ < P₂ < P₁ < P₂ 4) P₂ < P₁ < P₃ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm⁻¹ cm² equiv⁻¹ respectively. The equivalent conductance of benzoic acid in ohm⁻¹ cm² equiv⁻¹ at the same conditions is 		X/mol	lit ⁻¹		Y/1	mm of H	łg							
 0.01 P₃ The correct of vapour pressure is 1) P₁ < P₂ < P₃ 2) P₃ < P₂ < P₁ 3) P₃ < P₁ < P₂ 4) P₂ < P₁ < P₃ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm⁻¹ cm² equiv⁻¹ respectively. The equivalent conductance of benzoic acid in ohm⁻¹ cm² equiv⁻¹ at the same conditions is 		0.10				\mathbf{P}_1								
 The correct of vapour pressure is 1) P₁ < P₂ < P₃ 2) P₃ < P₂ < P₁ 3) P₃ < P₁ < P₂ 4) P₂ < P₁ < P₃ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm⁻¹ cm² equiv⁻¹ respectively. The equivalent conductance of benzoic acid in ohm⁻¹ cm² equiv⁻¹ at the same conditions is 		0.25				P_2								
 1) P₁ < P₂ < P₃ 2) P₃ < P₂ < P₁ 3) P₃ < P₁ < P₂ 4) P₂ < P₁ < P₃ 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm⁻¹ cm² equiv⁻¹ respectively. The equivalent conductance of benzoic acid in ohm⁻¹ cm² equiv⁻¹ at the same conditions is 		0.01				P ₃								
 160. At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm⁻¹ cm² equiv⁻¹ respectively. The equivalent conductance of benzoic acid in ohm⁻¹ cm² equiv⁻¹ at the same conditions is 		The con	rrect of	vapour	pressur	e is								
hydrochloric acid and sodium chloride are 240, 349 and 229 ohm ⁻¹ cm ² equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is		1) P ₁ <	$P_2 < P_3$	3	2)	$P_{3} < P_{2}$	< P ₁		3) P ₃	$< P_1 < H_2$	2	4) $P_2 < P_1 < P_3$		
equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is	160.	At a co	ertain	tempera	ture an	d at int	finite d	ilution,	the equ	iivalent	t conduct	ances of sodium benzoate,		
		hydroc	hloric	acid an	d sodiu	im chlo	ride ar	e 240, 2	349 and	229 o	hm ⁻¹ cm	n^2 equiv ⁻¹ respectively. The		
1) 80 2) 328 3) 360 4) 408		equival	ent cor	nductanc	e of be	nzoic ac	id in ol	m^{-1} cm ²	² equiv ⁻¹	at the	same con	ditions is		
		1) 80			2)	328			3) 360)		4) 408		
		equival			e of be	nzoic ac			² equiv ⁻¹	at the		ditions is		

121) 3	122) 3	123) 2	124) 4	125) 1	126) 1	127) 2	128) 4	129) 3	130) 2
131) 3	132) 2	133) 3	134) 2	135) 4	136) 1	137) 3	138) 1	139) 3	140) 1
141) 2	142) 1	143) 2	144) 2	145) 1	146) 3	147) 1	148) 1	149) 2	150) 2
151) 3	152) 3	153) 3	154) 3	155) 4	156) 3	157) 2	158) 1	159) 4	160) 3